K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2015

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

          \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           \(A=1-\frac{1}{100}\)(TỐI GIẢN CÁC PHÂN SỐ LẬP LẠI )

           \(A=\frac{99}{100}<1\)

                  vậy A<1

10 tháng 1 2022

Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
        \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
        = \(\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{100}{99.100}-\frac{99}{99.100}\)
        =\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
        =   \(1-\frac{1}{100}\)
        =     \(\frac{99}{100}\)
Vậy\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)

vi /chia au cong thi cha be hon a

11 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)< 1

~~~

#Sunrise

14 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

vậy...

k mình nha

14 tháng 3 2017

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\left(dpcm\right)\)

23 tháng 4 2017

a) 1/1.2 + 1/2.3 + 1/3.4 + ....... + 1/99.100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/99 - 1/100

= 1 - 1/100

= 99/100 < 1 nên 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 < 1 (ĐPCM)

23 tháng 4 2017

a)1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100

1-1/100=99/100<1

cho mk nha ^^

11 tháng 4 2019

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

11 tháng 4 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

24 tháng 4 2017

\(=1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)

\(=1+0+0+...+0-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 11\)

Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 11\)

24 tháng 4 2017

=1/2-1/3+1/3-1/4+...+1/99-1/100

=1/2-1/100

=50/100-1/100

=49/100<1

=> dãy trên < 1 đđcm

   1/1.2 + 1/2.3 + 1/3.4 + .......................+ 1/99.100    

= 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 +..................+ 1/99 - 1/100 

= 1 - 1/100 

= 99/100 

30 tháng 4 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

Ma 99/100 < 1.

=> 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 < 1 (dccm)