Cho hai đường thẳng d1:y=1/3x+m+1/3 và d2:y=-2m-6m+5
a)Chứng minh d1 và d2 luôn cắt nhau tại một điểm M tìm tọa độ của điểm M
b)Tìm m để giao điểm M của d1 và d2 nằm trên parabol (P):y=9x^2
Ai giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{3}x+m+\dfrac{1}{3}=2x-6m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{3}x=-7m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{5}m-3\\y=\dfrac{1}{3}\left(\dfrac{21}{5}m-3\right)+m+\dfrac{1}{3}=\dfrac{7}{5}m-1+m+\dfrac{1}{3}=\dfrac{12}{5}m-\dfrac{2}{3}\end{matrix}\right.\)
b: Theo đề, ta có: \(\dfrac{12}{5}m-\dfrac{2}{3}=9\cdot\left(\dfrac{21}{5}m-3\right)^2\)
Đến đây bạn chỉ cần giải phương trình bậc hai ra thôi
\(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)
\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)
Thay m = 2 vào phương trình đường thẳng d1 ta có:
\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)
Thay m = 2 vào phương trình đường thẳng d2 ta có:
\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)
Xét phương trình hoành độ giao điểm của d1 và d2 ta có:
\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)
\(\Rightarrow y=\dfrac{1}{3}.\)
Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)
1: Để hai đường thẳng cắt nhau thì
2m+1<>m+2
hay m<>1
b: Phương trình hoành độ giao điểm là:
x+1=-x+3
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
hay y=2
Bài 3:
Vì (d)//(d1) nên a=3
Vậy: (d): y=3x+b
Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:
\(b+2=0\)
hay b=-2