Cho góc xOy khác góc bẹt. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. h là 1điểm thuộc tia phân giác của góc xoy
a) chứng minh tam giác OAH = tam giác OBH
b) chứng minh HO là tia phân giác của góc AHB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xet tam giac OAH va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)
b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)
c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong goc AB
C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)
goc OHB= goc OHA( tam giac OHA= tam giac OHB )
--> goc OHB+goc OHB=180
-> 2 gpc OHB=180
->goc OHB=180:2=90
-> OH vuong goc AH tai H hay OC vuong goc AB
a: Xét ΔOCA và ΔOCB có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOCA=ΔOCB
a) xét tg OAH & tg OBH có :
OH chung
OA = OB ( gt )
góc AOH = góc BOH ( Ot p/g góc xOy )
suy ra tg OAH = tg OBH (c. g .c )
b) do tgOAH = tg OBH ( cmt )
suy ra góc OAH= góc OBH ( 2góc tg ứng )
Xét tg ONB & tg OAM có :
góc OAH= góc OBH ( cmt )
OA = OB ( gt )
góc O chung
suy ra tg ONB = tg OAM ( g . c .g )
c) có : OA = OB suy ra O thuộc trung trực AB (1)
tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )
suy ra H thuộc trung trực OH (2)
từ (1) & (2) suy ra OH trung trực của AB
suy ra OH vuông góc AB
d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN )
a,Xét \(\Delta\)OAH và \(\Delta\)OBH có:
OA=OB
góc AOH=góc BOH
OH chung
\(\Rightarrow\)\(\Delta\)OAH=\(\Delta\)OBH(c.g.c)
b,Vì \(\Delta\)OAH=\(\Delta\)OBH\(\Rightarrow\)góc AHO=gócBHO(2 góc tương ứng)\(\Rightarrow\)HOlà tia phân giác của góc AHB
a) Xét ΔOAH và ΔOBH có
OA=OB(gt)
\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))
OH chung
Do đó: ΔOAH=ΔOBH(c-g-c)
b) Ta có: ΔOAH=ΔOBH(cmt)
nên \(\widehat{AHO}=\widehat{BHO}\)(hai góc tương ứng)
mà tia HO nằm giữa hai tia HA,HB
nên HO là tia phân giác của \(\widehat{AHB}\)(đpcm)