A=3n-5/n+4
tìm giá trị của n thuộc Z đe A có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A∈Z⇒3n-5⋮n+4(n∈Z,n≠-4)
ta có:n+4⋮n+4
⇒3.(n+4)+17⋮n+4
⇒17⋮n+4⇒(n+4)∈Ư(17)={-1;1;-17;17}
→bảng giá trị
n+4 | -1 | 1 | -17 | 17 |
n | -5 | -3 | -21 | 13 |
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\in Z\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
Ta có:\(A\in Z\Leftrightarrow\frac{3n-5}{n+4}\in Z\Leftrightarrow\frac{3n+12-17}{n+4}\in Z\Leftrightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Leftrightarrow3-\frac{17}{n+4}\in Z\Leftrightarrow\frac{-17}{n+4}\in Z\)
\(\Leftrightarrow n+4\inƯ17\Leftrightarrow n+4\in\left\{-1;-17;1;17\right\}\)
Thay \(n+4=-1\Rightarrow n=-5\) (TM)
\(n+4=-17\Rightarrow n=-21\) (TM)
\(n+4=1\Rightarrow n=-3\) (TM)
\(n+4=17\Rightarrow n=13\) (TM)
Vậy \(n\in\left\{-21;-5;-3;13\right\}\) thì \(A\in Z\)
ta có
\(A=\frac{3n-5}{n+4}=3-\frac{17}{n+4}\) là số nguyên khi \(\frac{17}{n+4}\text{ nguyên hay }n+4\text{ là ước của 17 }\)
\(\Rightarrow n+4\in\left\{\pm1,\pm17\right\}\Rightarrow n\in\left\{-21,-5,-3,13\right\}\)
Trả lời:
Ta có : A = \(\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3+\frac{17}{n+4}\)
Để A = \(\frac{3n-5}{n+4}\)là số nguyên thì \(\frac{17}{n+4}\)cũng là số nguyên
=> \(17⋮n+4\)hay \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy \(x\in\left\{-3;-5;13;-21\right\}\)thì A = \(\frac{3n-5}{n+4}\)là số nguyên.
10 chia hết cho n-2 => n -2 E Ư(10) cò n lại tự tí nh ha
để \(A\in Z\Rightarrow3n-5⋮n+4\left(n\in Z;n\ne-4\right)\left(1\right)\)
ta có \(n+4⋮n+4\)
\(\Rightarrow3\left(n+4\right)⋮n+4\)
\(\Rightarrow3n+12⋮n+4\left(2\right)\)
từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow3n+12-\left(3n-5\right)⋮n+4\)
\(\Rightarrow3n+12-3n+5⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\in\text{Ư}_{\left(17\right)}=\text{ }\left\{1;-1;17;-17\right\}\)
lập bảng giá trị
\(n+4\) | \(1\) | \(-1\) | \(17\) | \(-17\) |
\(n\) | \(-3\) | \(-5\) | \(13\) | \(-21\) |
vậy................
Để A có giá trị nguyên thì 3n - 5 \(⋮\)n + 4.
Ta có : 3n - 5 = 3(n + 4) - 17
Do n + 4 \(⋮\)n + 4
Để 3(n + 4) - 17 \(⋮\)n + 4 thì 17 \(⋮\)n + 4 => n + 4 \(\in\)Ư(17) = {1, -1, 17, -17}
Với : n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 17 => n = 13
n + 4 = -17 => n = -21
Vậy n = {-3; -5; 13; -21} thì A có giá trị nguyên.
\(\frac{3n-5}{n+4}=\frac{3.\left(n+4\right)-17}{n+4}=\frac{3.\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\)
Để \(3-\frac{7}{n+4}\) là số nguyên <=> \(\frac{17}{n+4}\)
=> n + 4 ∈ Ư ( 17 ) => Ư ( 17 ) = { ± 1 ; ± 17 }
=> n ∈ { - 5 ; - 3 ; - 21 ; 13 }
để A có giá trị nguyên thì 3n-5 chia hết cho n+4 ( điều kiện: n khác -4)
ta có 3n - 5 = 3(n+4) -17
vì 3(n+4) chia hết cho n+4 nên để 3(n+4) - 17 chia hết cho n+4 thì 17 chia hết cho n+4
=> n+4 là ước của 17
ta có ư(17) = -1;-17;1;17
nếu n+4=-1 thì n=-5 (thoả mãn)
nếu n+4 = -17 thì n=-21(thoả mãn)
nếu n+4 = 1 thì n= -3(thoả mãn)
nếu n+4 = 17 thì n= 16(thoả mãn)
a) để A có giá trị nguyên thì
6n-1 chia hết cho 3n+2
6n+4-5 chia hết cho 3n+2
suy ra:2(3n+2)-5 chia hết cho 3n+2
vì 3n+2 chia hết cho 3n+2 nên 2(3n+2) cũng chia hết cho 3n+2
suy ra : 5 chia hết cho 3n+2
suy ra:3n+2 thuộc ước của 5
Ư(5)=1;-1;5;-5
ta có bảng giá trị
3n+2 1 -1 5 -5
n -1/3 -1 1 -7/3
mà A thuộc Z
suy ra:n=1;-1
vậy để A có giá trị nguyên thì
n thuộc 1;-1
b)cậu tự làm nhé
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }