Tìm số dư khi chia tổng:A=1+5+52+...+52008 cho 6, cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:
b.
$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$
$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$
$=2+24+(1+5)(5^2+5^4+...+5^{98}$
$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$
$\Rightarrow A$ chia $6$ dư $2$.
Gọi tổng là S
\(S=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)
\(S=1+5.6+5^3.6+....+5^{2007}.6\)
\(S=1+6.\left(5+5^3+...+5^{2007}\right)\)
Vậy S chia 6 dư 1
\(S=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+....+\left(5^{2006}+5^{2007}+5^{2008}\right)\)
\(S=31.1+31.5^3+....+31.5^{2007}\)
\(S=31.\left(1+5^3+....+5^{2007}\right)\)
Vậy S chia hết cho 31 hay S chia 31 dư 0
Tổng có 2008 số hạng. Ta có :
1 + 5 + 52 + ... + 52008
= 1 + 5 + ( 52 + 53 + 54 ) + ( 56 + 57 + 58 ) + ... + ( 52006 + 52007 + 52008 )
= 1 + 5 + 52( 1 + 5 + 52 ) + 55( 1 + 5 + 52 ) + ... + 52006( 1 + 5 + 52 )
= 6 + 52 . 31 + 55 . 31 + ... + 52006 . 31
= 6 + 31( 52 + 55 + ... + 52006 ) chia cho 31 dư 6
#ĐinhBa
Đặt \(A=1+5+5^2+5^3+...+5^{2008}\)
A có 2009 số chia làm 1004 cặp, còn dư số 1
\(\Rightarrow A=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)
\(\Rightarrow A=1+5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2007}\left(1+5\right)\)
\(\Rightarrow A=1+5.6+5^3.6+...+5^{2007}.6\)
\(\Rightarrow A=1+6\left(5+5^3+...+5^{2007}\right)\)
Vậy A chia 6 dư 1.