Cho x^2+y^2+z^2=19 và 17(xy+yz+zx)=105. Tính x+y+z =? (x,y,z>0) .......... cảm ơn ....^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> xy+yz+zx =105/17
Ta có\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
= 19 + 2. 105/17
=533/17
=> \(x+y+z=\sqrt{\frac{533}{17}}\)
Lời giải:
\(yz-xz-xy=0\Rightarrow yz-xz=xy\)
\(B=\frac{yz}{x^2}-\frac{zx}{y^2}-\frac{xy}{z^2}\)\(=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}\)
Xét: \((yz)^3-(xz)^3-(xy)^3=(yz-xz)^3+3yz.xz(yz-xz)-(xy)^3\)
\(=(xy)^3+3yz.xz.xy-(xy)^3=3x^2y^2z^2\)
\(\Rightarrow B=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
Mà \(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)
Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)
Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)
\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)
\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)
Vì \(17.\left(xy+yz+zx\right)=105\Rightarrow\left(xy+yz+zx\right)=\frac{105}{17}\)
Ta có :
\(\left(x+z+y\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=19+2\left(\frac{105}{17}\right)=31\frac{6}{17}\)
Do đó : \(x+y+z=\sqrt{31\frac{6}{17}}\)
hoặc \(x+y+z=-\sqrt{31\frac{6}{17}}\)
Chúc bạn học tốt nha !!!