Cho tỉ lệ thức \(\frac{3x-y}{x+y}=\frac{3}{4}\) khi đó x/y=.........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\left(3x-y\right).4=\left(x+y\right)3\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Vậy \(\frac{x}{y}=\frac{7}{9}\)
1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45
\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow\left(3x-y\right)4=3\left(x+y\right)\)
=>12x-4y=3x+3y
=>12x-4y=3x+3y
=>12x-3x=3y+4y
=>9x=7y
=>x/y=7/9
vậy x/y=7/9
Ta có: \(\frac{3x-y}{x+y}\)=\(\frac{3}{4}\)
\(\Leftrightarrow\)4(3x-y)=3(x+y)
\(\Leftrightarrow\)12x-4y=3x+3y
\(\Leftrightarrow\)12x-3x=4x+3y
\(\Leftrightarrow\)9x=7y
\(\Leftrightarrow\)\(\frac{x}{y}\)=\(\frac{7}{9}\)
\(\frac{3x-y}{x+y}=\frac{3}{4}\Leftrightarrow\frac{3x-y}{x+y}+1=\frac{3}{4}+1\Leftrightarrow\frac{4x}{x+y}=\frac{7}{4}.\) Ở vế trái chia cả tử và mẫu cho y , được:
\(\frac{4.\frac{x}{y}}{\frac{x}{y}+1}=\frac{7}{4}\) Suy ra : \(16.\frac{x}{y}=7\left(\frac{x}{y}+1\right)\) Vậy \(9.\frac{x}{y}=7\Leftrightarrow\frac{x}{y}=\frac{7}{9}\)
Ta có: \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\frac{3x+3y-4y}{x+y}=\frac{3}{4}\)
\(\Rightarrow3-\frac{4y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\frac{4y}{x+y}=3-\frac{3}{4}=\frac{9}{4}\)
\(\Rightarrow4.4y=9.\left(x+y\right)\)
\(\Rightarrow16y=9y+9x\)
\(\Rightarrow9x=16y-9y=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Vậy tỉ số \(\frac{x}{y}=\frac{7}{9}\)
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{x+y+z}=\frac{2\cdot\left(x+y+z\right)}{x+y+z}=2\)
x+y=2z
=> kz=2z
=>k=2
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+z+x}{z+x+y}=\frac{2\left(x+y+z\right)}{x+y+z}\) = 2
x+ y/z = 2
2z = x + y
Vậy z = 2
Ta có:
3x-y/x+y = 3/4
4(3x-y)=3(x+y)
12x-4y = 3x+3y
9x = 7y
x/y = 7/9
\(\frac{3x-y}{x+y}=\frac{3}{4}\Leftrightarrow4\left(3x-y\right)=3\left(x+y\right)\Leftrightarrow12x-4y=3x+3y\Leftrightarrow12x-3x=4y+3y\Leftrightarrow9x=7y\)
=>x/y=7/9