Cho hàm số
y= (m-1) x+3
y=-3mx +n-1
Tìm m,n để 2 đường thẳng song song với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-1=3\\m-3\ne2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\-m\ne2\end{matrix}\right.\Leftrightarrow m=2\)
b: Để hai đồ thị trùng nhau thì \(\left\{{}\begin{matrix}m^2-1=3\\m-3=2m-1\end{matrix}\right.\)
hay m=-2
Bài 1
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2 và m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng song song thì:
3m = 2m + 1
⇔ m = 1 (nhận)
Vậy m = 1 thì hai đường thẳng đã cho song song
Bài 2
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng đã cho cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2; m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng trùng nhau thì:
3m = 2m + 1 và 4 - m² = 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (*)
*) 4 - m² = 3
⇔ m² = 4 - 3
⇔ m² = 1
⇔ m = 1 (nhận) hoặc m = -1 (nhận) (**)
Từ (*) và (**) ⇒ m = 1 thì hai đường thẳng đã cho trùng nhau
c) Để hai đường thẳng đã cho song song thì:
3m = 2m + 1 và 4 - m² ≠ 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (1)
*) 4 - m² ≠ 3
⇔ m² ≠ 1
⇔ m ≠ 1 (nhận) và m ≠ -1 (nhận) (2)
Từ (1) và (2) ⇒ Không tìm được m để hai đường thẳng đã cho song song
d) Để hai đường thẳng vuông góc thì:
3m.(2m + 1) = -1
⇔ 6m² + 3m + 1 = 0 (3)
Ta có:
6m² + 3m + 1 = 6.(m² + m/2 + 1/6)
= 6.(m² + 2.m.1/4 + 1/16 + 5/48)
= 6(m + 1/4)² + 5/8 > 0 (với mọi m)
⇒ (3) là vô lý
Vậy không tìm được m để hai đường thẳng đã cho vuông góc
Cho 2 đường thẳng
y = (m^2 - 3)x + m - 1
y = x + 1
Tìm m để 2 đường thẳng đó:
a. song song
b. trùng nhau
b: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m^2-3=1\\m-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m=2\end{matrix}\right.\Leftrightarrow m=2\)
Cho 2 đường thẳng
y = (m^2 - 3)x + m - 1
y = x + 1
Tìm m để 2 đường thẳng đó:
a. song song
b. trùng nhau
a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m^2-3=1\\m-1\ne1\end{matrix}\right.\Leftrightarrow m=-2\)
b: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m^2-3=1\\m-1=1\end{matrix}\right.\Leftrightarrow m=2\)
Cho 2 đường thẳng
y = (m^2 - 3)x + m - 1
y = x + 1
Tìm m để 2 đường thẳng đó:
a. song song
b. trùng nhau
a, y = (m^2 - 3)x + m - 1 // y = x + 1
<=> \(\left\{{}\begin{matrix}m^2-3=1\\m-1\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\)
<=> m = \(\pm\)2 và \(m\ne2\)<=> m = -2
b, y = ( m^2 - 3 )x + m - 1 trùng y = x + 1
<=> \(\left\{{}\begin{matrix}m^2-3=1\\m-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m=2\end{matrix}\right.\)<=> m = 2
a: Để hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m^2-3=1\\m-1\ne1\end{matrix}\right.\Leftrightarrow m=-2\)
b: Để hai đường thẳng trùng nhau thì
\(\left\{{}\begin{matrix}m^2-3=1\\m-1=1\end{matrix}\right.\Leftrightarrow m=2\)
Để hai đt song song với nhau thì:
\(\left\{{}\begin{matrix}m^2=3m\\-2m\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-3\right)=0\\m\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=3\\m=0\end{matrix}\right.\\m\ne0\end{matrix}\right.\)\(\Rightarrow m=3\)
Vậy...
\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)
2 đt // nhau khi a=a',b khác b'
Ta có
m-1=-3m
m+3m=1
=> m=1/4
Ta có b khác b' suy ra
3 khác n -1
n khác -3-1
=> n khác -4
Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m-1=-3m\\n-1< >3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{4}\\n< >4\end{matrix}\right.\)