K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

undefined  undefined

a: Xét ΔBEA và ΔBED có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBEA=ΔBED

20 tháng 12 2019

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a) Ta có: \(BC^2=13^2=169\)

\(AB^2+AC^2=5^2+12^2=169\)

Do đó: \(BC^2=AB^2+AC^2\)(=169)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao
BH là đường phân giác

Do đó: ΔBFC cân tại B

c: Ta có: ΔBFC cân tại B

=>BF=BC

Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung

BF=BC

Do đó: ΔBDF=ΔBAC

=>\(\widehat{BDF}=\widehat{BAC}=90^0\)

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

mà \(\widehat{BAE}=90^0\)

nên \(\widehat{BDE}=90^0\)

mà \(\widehat{BDF}=90^0\)

và DE,DF có điểm chung là D

nên D,E,F thẳng hàng

10 tháng 2 2022

e tk hen:

undefined

2 tháng 7 2021

mnhf cần bài này gấp mong mọi người giúp 

 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+35^0=90^0\)

hay \(\widehat{C}=55^0\)

Vậy: \(\widehat{C}=55^0\)

b) Xét ΔBEA và ΔBED có 

BA=BD(gt)

\(\widehat{ABE}=\widehat{DBE}\)(BE là tia phân giác của \(\widehat{ABD}\))

BE chung

Do đó: ΔBEA=ΔBED(c-g-c)

c) Xét ΔBHF vuông tại H và ΔBHC vuông tại H có 

BH chung

\(\widehat{FBH}=\widehat{CBH}\)(BH là tia phân giác của \(\widehat{FBC}\))

Do đó: ΔBHF=ΔBHC(Cạnh góc vuông-góc nhọn kề)

Bài 1: Cho tam giác ABC vuông tại A có 0 B 53  a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh    BEA BED . Từđó suy ra ED BC  c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng    BHF BHC d) Chứng minh    BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC  ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có 0 B 53  a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh    BEA BED . Từđó suy ra ED BC  c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng    BHF BHC d) Chứng minh    BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC  ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM MD.  Chứng minh: a)    AMB DMC . Từ đó suy ra AB // CD b) AC // BD và AC = BD c) AM BC.  Bài 3: Cho tam giác ABC có AB AC  . Gọi M là một điểm nằm trong tam giác sao cho MB MC  ; N là trung điểm của BC. Chứng minh: a)    AMB DMC . Từ đó suy ra AM là tia phân giác của ·BAC. b) Ba điểm A; M; N thẳng hàng. c) MN là đường trung trực của đoạn thẳng BC

1
15 tháng 12 2021

cac ban giup minh voi nhe