ΔABC có M là trung điểm của BC, AM là tia phân giác của Â. cm tam giác ABC cân.
(chưa học đường trung tuyến)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M là trung điểm của BC
=> BM = CM
Ta có : AM là tia phân giác của góc A
=> Góc BAM = góc CAM
Xét tam giác BAM và tam giác CAM có:
BM = CM (cm trên)
Góc BAM = góc CAM (cm trên)
AM = AM ( cạnh chung)
Vậy tam giác BAM = tam giác CAM (c-g-c)
=> AB = AC ( cạnh tương ứng)
Vậy tam giác ABC là tam giác cân (đpcm)
VÌ AM là đường phân giác đồng thời là trung tuyến nên tam giác ABC cân
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét tứ giác BECD có
M là trung điểm của BC
M là trung điểm của ED
Do đó: BECD là hình bình hành
Suy ra: CE//BD
c: Hình bình hành BECD có \(ED\perp BC\)
nên BECD là hình thoi
=>BC là tia phân giác của góc DBE
a: M là trung điểm của BC
=>AM là đường trung tuyến của ΔABC
b: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: Sửa đề; tam giác ABC
AB=AC
BM=CM
=>AM là trung trực của BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H