biết x,y là các số thỏa mãn (3x-1)^2+|x-2y|=0 khi đó 3x+12y=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-1)2+|x-2y| = 0 nên (3x-1)2 và |x-2y| đối nhau mà 2 số đều không âm nên chỉ có thể (3x-1)2 = |x-2y| = 0
=> 3x-1 = 0 ; x-2y = 0 => 3x = 1 => x = 1/3 = 2y => y = 1/6 => 3x+12y = 1 + 12.1/6 = 1 + 2 = 3
\(x^2-xy-12y^2=0\)
\(\Leftrightarrow\left(x^2+3xy\right)-\left(4xy-12y^2\right)=0\)
\(\Leftrightarrow x\left(x+3y\right)-4y\left(x+3y\right)=0\)
\(\Leftrightarrow\left(x+3y\right)\left(x-4y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3y\\x=4y\end{cases}}\)
TH1:\(x=-3y\)
\(A=\frac{3\cdot\left(-3y\right)+2y}{3\left(-3y\right)-2y}=\frac{-9y+2y}{-9y-2y}=\frac{-7y}{-11y}=\frac{7}{11}\)
TH2:\(x=4y\)
\(A=\frac{3\cdot4y+2y}{3\cdot4y-2y}=\frac{12y+2y}{12y-2y}=\frac{14y}{10y}=\frac{7}{5}\)
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
#) Giải :
y( x -2) + 3x - 6 = 0
y( x - 2) + 3( x - 2) = 0
( y + 3 )( x - 2) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)
Mk cx hoq chak đâu ạ :33
#) Giải :
b) xy + 3x - 2y - 7 = 0
xy + 3x - 2y - 6 = 1
x( y + 3) -2(y + 3) = 1
( x-2)( y+3) = 1
Ta có bảng sau :
x - 2 -1 1
y+ 3 -1 1
x 1 3
y -4 -2
Vậy ( x;y) thuộc {(1;3);(-4;-2)}
Chúc bn hok tốt ạ :33
ta có: \(\left(3x-1\right)^2\ge0;\left|x-2y\right|\ge0\Rightarrow\left(3x-1\right)^2+\left|x-2y\right|\ge0\)
theo đề: \(\left(3x-1\right)^2+\left|x-2y\right|=0\Leftrightarrow\int^{\left(3x-1\right)^2=0}_{\left|x-2y\right|=0}\Leftrightarrow\int^{3x=1\Rightarrow x=\frac{1}{3}}_{x=2y\Rightarrow y=\frac{x}{2}=\frac{1}{\frac{3}{2}}=\frac{2}{3}}\)
khi đó 3x+12y=3.1/3+12.2/3=9
Vậy...
=biết x,y là các số thỏa mãn (3x-1)^2+|x-2y|=0 khi đó 3x+12y=