số dư trong phép chia 51^39 +39^51+12 cho 90
có thể dùng casio mk ko cần giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3
=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)
+ Ta có: 5139 + 3951 + 12
= ...1 + 3950.39 + 12
= ...1 + (392)25.39 + 12
= ...1 + ...125.39 + 12
= ...1 + ...1.39 + 12
= ...1 + ...9 + 12
= ...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)
Từ (1) và (2) => 9.m + 3 = 10.n + 2
=> 9.m + 1 = 10.n
=> 9.m + 1 = 9.n + n
=> 9.m - 9.n = n - 1
=> 9.(m - n) = n - 1
=> n - 1 chia hết cho 9
=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2
= 90.n + 10 + 2
= 90.n + 12 chia 90 dư 12
=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12
+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3
=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)
+ Ta có: 5139 + 3951 + 12
= ...1 + 3950.39 + 12
= ...1 + (392)25.39 + 12
= ...1 + ...125.39 + 12
= ...1 + ...1.39 + 12
= ...1 + ...9 + 12
= ...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)
Từ (1) và (2) => 9.m + 3 = 10.n + 2
=> 9.m + 1 = 10.n
=> 9.m + 1 = 9.n + n
=> 9.m - 9.n = n - 1
=> 9.(m - n) = n - 1
=> n - 1 chia hết cho 9
=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2
= 90.n + 10 + 2
= 90.n + 12 chia 90 dư 12
=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12
5139 + 3951 + 12 = .....51+ ...39 + 12 = ...102
=> ...102 : 90 dư 12
Dư 2 bạn nhé.
Mình có tìm được lời giải chi tiết ở đây này. Bạn vào tham khảo thêm nhé http://pitago.vn/question/so-du-cua-513939512-chia-cho-90-35166.html
Số dư trong phép chia một số tự nhiên cho số tự nhiên b ≠ 0 là một số tự nhiên r < b nghĩa là r có thể là 0; 1;...; b - 1.
Số dư trong phép chia cho 3 có thể là 0; 1; 2.
Số dư trong phép chia cho 4 có thể là: 0; 1; 2; 3.
Số dư trong phép chia cho 5 có thể là: 0; 1; 2; 3; 4.
Thay x = 13 vào biểu thức, ta có:
\(P\left(13\right)=1+13+13^2+...+13^{100}\)
\(13P\left(13\right)=13+13^2+13^3+...+13^{101}\)
\(\Rightarrow13P\left(13\right)-P\left(13\right)=\left(13+13^2+13^3+...+13^{101}\right)-\left(1+13+13^2+...+13^{100}\right)\)
\(\Rightarrow12P\left(13\right)=13^{101}-1\)
\(\Rightarrow P\left(13\right)=\dfrac{13^{101}-1}{12}\)
Ta có: 51.12 = 612
Vì 13101 đồng dư với 421 ( mod 612 )
\(\Rightarrow13^{101}=612.k+421\) ( \(k\in Z\) )
\(\Rightarrow P\left(13\right)=\dfrac{612k+421-1}{12}\)
\(\Rightarrow P\left(13\right)=\dfrac{612k+420}{12}\)
\(\Rightarrow P\left(13\right)=51k+35\)
Vậy P(13) chia cho 51 dư 35.
Mình vẫn chưa hiểu phần 51.12 = 612. Bạn giải thích đi