cho tam giác ABC có AB+AC=2BC. Gọi I, G lần lượt là giao điểm của các đường phân giác và trọng tâm tam giác ABC. Chứng minh IG song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/. _Kẻ pg AD và đ/cao AE (D ; E thuộc BC) ta thấy AG/AE=2/3_bt:(1)
Trong tg ABC vớí pg AD ta có : DB/DC= AB/AC=6/12=1/2 <=> BD=3 ; DC=6 (cm)
Trong tg ABD với pg BI ta có : IA/IB=AB/BD =3/6 <=>AI/AD=2/3 -bt:(2). từ (1) & (2)suy ra đpcm
góc AED=^ACB=48 độ ( hai góc đều cọng với góc^BED thì =180 độ
a) Gọi IP, IQ, IS lần lượt là khoảng cách từ I đến BC, CA, AB => IP = IQ = IS
Ta có SABC = SBIC +SAIC +SAIB = 1/2.IP.BC +1/2.IQ.AC +1/2.IS.AB =1/2.IP(BC +CA +AB) = 1/2.IP.3BC( vì AB + AC = 2BC) = 3SBIC
b) Gọi D, M lần lượt là giao điểm của AI, AG với BC.
Trong tam giác ABC có AD là phân giác => \(\frac{AC}{DC}=\frac{AB}{DB}=\frac{AB+AC}{DC+DB}=\frac{AB+AC}{BC}=2\)2
Trong tam giác ABD có BI là phân giác => \(\frac{AI}{ID}=\frac{AB}{DB}=2\)
Mặt khác do G là trọng tâm tg ABC => \(\frac{AG}{GM}=2\)
=> \(\frac{AI}{ID}=\frac{AG}{GM}\)=> IG //BC (Talet đảo)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC