Trong (Oxy) cho 2 điểm A(2;1) và B(-1;2). Xác định tọa độ điểm M thuộc Ox sao cho MA + MB đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M ∈ O x nên M(m; 0) và A M → = m − 2 ; − 2 B M → = m − 5 ; 2 .
Vì A M B ^ = 90 0 suy ra A M → . B M → = 0 nên m − 2 m − 5 + − 2 .2 = 0.
⇔ m 2 − 7 m + 6 = 0 ⇔ m = 1 m = 6 ⇒ M 1 ; 0 M 6 ; 0 .
Chọn B.
Ta có M ∈ O x nên M( m; 0) và A M → = m − 2 ; − 2 B M → = m − 5 ; 2 .
Vì A M B ^ = 90 0 suy ra A M → . B M → = 0 nên m − 2 m − 5 + − 2 .2 = 0.
⇔ m 2 − 7 m + 6 = 0 ⇔ m = 1 m = 6 ⇒ M 1 ; 0 M 6 ; 0 .
Chọn B.
Lời giải:
$I$ là trung điểm $AB$ nên:
\(\left\{\begin{matrix}
\frac{x_A+x_B}{2}=x_I\\
\frac{y_A+y_B}{2}=y_I\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_B=2x_I-x_A\\
y_B=2y_I-y_A\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_B=2.0-1=-1\\ y_B=2(-2)-0=-4\end{matrix}\right.\)
Vậy $B(-1,-4)$
Đáp án B
Ta có: V O ; k = 2 ( A ) = A ' ⇒ O A ' → = 2 O A → ⇔ x A ' = 4 y A ' = - 2 . Vậy A ' 4 ; - 2