Tìm \(\frac{a}{b}\)biết a,b,7a+b,ab+11 đều là các số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
diendantoanhoc.net
Bn mở cái này là có
Do \(ab+1>3\)
Nên \(ab+1\) là số lẻ
Suy ra: \(a\) là số chẵn hoặc \(b\) là số chẵn
Suy ra \(a=2\) hoặc \(b=2\)
+) Khi \(a=2\)
chỗ khi a = 2, nếu b chia 3 dư 2 => ab + 1 = 2b + 1 = 2.(3k + 2) + 1
= 6k + 4 + 1 = 6k + 5 chia hết cho 3 sai r`
a=2;b=5 thử lại vx đúng
M nghi la k co dap an
Gia thuyet de bai la a+b va a*b la so nguyen to
Thu 1, so nguyen to chi chia het cho 1 va chinh no
Thu 2, so nguyen to thuong la so le
Theo de bai thi a va b chắc là so co 1 chu so nen suy ra hoặc 1 trong 2 so la so 2 hoac k co so nao la so 2
TH1: 1 trong 2 so a hoac b la so 2
thi ngay lap tuc gia thuyet bi bác bỏ : a*b k the nao la so nguyen to vi no se co it nhat 3 ước : 1, 2 va chinh no
TH2: Khong co so nao la so 2
thi ngay lap tuc gia thuyet bi bác bỏ : a+b tức là tổng cua 2 so lẻ k the nao ra so lẻ => như trên (no se co it nhat 3 ước : 1, 2 va chinh no)
Vay bai nay k co dap an
Lời giải:
$ab+11$ là số nguyên tố, mà $ab+11>2$ nên $ab+11$ là số nguyên tố lẻ.
$\Rightarrow ab$ chẵn.
$\Rightarrow$ trong 2 số sẽ có ít nhất 1 số chẵn.
TH1: $a$ chẵn. Do $a$ nguyên tố nên $a=2$
Khi đó cần tìm $b$ sao cho $b, 14+b$ và $2b+11$ nguyên tố
Nếu $b\vdots 3$ thì $b=3$ (do $b$ nguyên tố). Khi đó $14+b=17, 2b+11=17$ là snt (hoàn toàn thỏa mãn)
Nếu $b$ chia 3 dư 1 thì $14+b\vdots 3$. Mà $14+b>3$ nên không là snt (loại)
Nếu $b$ chia 3 dư 2 thì $2b+11\vdots 3$. Mà $2b+11>3$ nên không là snt (loại)
TH2: $b$ chẵn. Do $b$ nguyên tố nên $b=2$
Khi đó cần tìm a sao cho $a, 7a+2, 2a+11$ là snt.
Nếu $a\vdots 3$ thì $a=3$. Khi đó: $7a+2=23, 2a+11=17$ là snt (tm)
Nếu $a$ chia 3 dư 1 thì $7a+2\vdots 3$. Mà $7a+2>3$ nên không là snt (loại)
Nếu $a$ chia $3$ dư 2 thì $2a+11\vdots 3$. Mà $2a+11>3$ nên không là snt (loại)
Vậy phân số cần tìm là $\frac{2}{3}$ hoặc $\frac{3}{2}$