Tìm x 1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=98/1545
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)
<=>\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{98}{1545}\)
<=>\(\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{x+3}\right)=\frac{98}{1545}\)
<=>\(\frac{1}{3}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}\)
<=>\(\frac{1}{3}-\frac{1}{x+3}=\frac{98}{515}\)
<=>\(\frac{1}{x+3}=\frac{1}{3}-\frac{98}{515}\)
<=>\(\frac{1}{x+3}=\frac{221}{1545}\)
<=> \(x=?????\)
Hình như đề sai hay sao vậy bạn?
hai dòng dưới đề ý trong ngoặc lúc đầu đâu có \(\frac{1}{3}\)
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{y\left(y+3\right)}=\dfrac{98}{1545}\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{y\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{y}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{y+3}{5\left(y+3\right)}-\dfrac{5}{5\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{y+3-5}{5\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{y-2}{5\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow515\left(y-2\right)=98.5\left(y+3\right)\)
\(\Leftrightarrow515y-1030=490y+1470\)
\(\Leftrightarrow25y-2500=0\\ \Leftrightarrow25y=2500\\ \Leftrightarrow y=100\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{y+3}\right)=\dfrac{98}{1545}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{y+3}=\dfrac{1}{103}\)
hay x=100
\(\frac{1}{3}\times\left(\frac{1}{5}-\frac{1}{8}+...+\frac{1}{y}-\frac{1}{y+3}\right)=\frac{98}{1545}\)
\(\frac{1}{3}\times\left(\frac{1}{5}-\frac{1}{y+3}\right)=\frac{98}{1545}\)
\(\frac{1}{5}-\frac{1}{y+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)
\(\frac{1}{y+3}=\frac{1}{103}\)
\(y+3=103\)
\(y=100\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+......+\frac{1}{y}-\frac{1}{\left(y+3\right)}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)
\(\Rightarrow\left(\frac{1}{5}-\frac{1}{y+3}\right)=\frac{98}{1545}:\frac{1}{3}\)
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{y\left(y+3\right)}=\dfrac{98}{1545}\)
\(\Leftrightarrow\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{y\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{14}-...+\dfrac{1}{y}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{y+3}=\dfrac{1}{5}-\dfrac{98}{515}\\ \Leftrightarrow\dfrac{1}{y+3}=\dfrac{1}{103}\\ \Leftrightarrow y+3=103\\ \Leftrightarrow y=100\)
Vậy...........................................
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305