Cho biểu thức: A = (\(\dfrac{x-3}{x}\)-\(\dfrac{x}{x-3}\) +\(\dfrac{9}{x^2-3x}\)) :\(\dfrac{2x-2}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A có giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{x^2-9}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a: Thay x=5 vào B, ta được:
\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)
b: \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)
\(a, x^3+5x^2-9x-45=0\\ \Leftrightarrow x^2\left(x+5\right)-9\left(x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\left(x\ne-5\right)\\ \text{Với }x=3\Leftrightarrow A=\dfrac{9-9}{3\left(3+5\right)}=0\\ \text{Với }x=-3\Leftrightarrow A=\dfrac{9-9}{3\left(-3+5\right)}=0\\ \text{Vậy }A=0\\ b,B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\\ B=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a)B = \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)
= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)
= \(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)
= \(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)
b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)
Thay x = -4 vào B, ta có:
B = \(\dfrac{-4.3}{-4+3}=12\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)
<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)
d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên
<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)
x+3 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -12(C) | -6(C) | -4(C) | -2(C) | 0(C) | 6(C) |
\(a,A=\dfrac{2x\left(x-3\right)+8\left(x+3\right)-2x-12}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x^2+6}\\ A=\dfrac{2x^2-6x+8x+24-2x-12}{\left(x-3\right)}\cdot\dfrac{1}{x^2+6}\\ A=\dfrac{2x^2+12}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2\left(x^2+6\right)}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2}{x-3}\)
\(b,A=5\Leftrightarrow\dfrac{2}{x-3}=5\Leftrightarrow5x-15=2\Leftrightarrow x=\dfrac{17}{5}\)
\(a,A=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ A=\dfrac{-6x+18}{2\left(x-3\right)\left(x-1\right)}=\dfrac{-6\left(x-3\right)}{2\left(x-3\right)\left(x-1\right)}=\dfrac{-3}{x-1}\\ b,A\in Z\Leftrightarrow x-1\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\)