cho n thuộc N và n > 3. chứng minh rằng nếu 2n = 10a + b ( 0 < b < 10) thì a nhân b chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^n =10a +b . do 0<b<9
=> b là chữ số tậm cùng của 2^n
xét n=4k tức n chia hết cho 4
=> 2^n có tận cùng là 6
=> b=6 => ab chia hết cho 6
xét n=4k + r với 1 ≤ r ≤ 3 và r là số nguyên
=> 2^n =10a + b
=> b chia hết cho 2 ,giờ ta phải cm a chia hết cho 3
2^n =(2^4k)*2^r do 2^4k luôn có tận cùng là 6 mà 2 ≤ 2^r ≤8
=> 2^4k *2^r có tận cùng thuộc { 2,4,8}
=> b= 2^r vs r nguyên và 1 ≤ r ≤ 3
=> 10 a =2^n -b =2^n -2^r =2^r ( 2^4k -1) chia hết cho 3 ( do 2^4k -1 chia hết cho 3)
=> 10a chia hết cho 3 => a chia hết cho 3
mà b chia hết cho 2
=> ab chia hết cho 6
Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.
Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:
-
Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.
-
Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.
-
Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.
-
Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.
Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.
Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.
Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.
Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b ∈ N, 0 < a < 10), thì tích ab chia hết cho 6.