Tính: A=1/1.2+1/2.3+1/3.4+....+1/99.100
Giải chi tiết hộ mìk nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=9\left(1-\frac{1}{2020}\right)\)
\(=9.\frac{2019}{2020}\)
\(=\frac{18171}{2020}\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(A=9\left(1-\frac{1}{2020}\right)=\frac{9.2019}{2020}=\frac{18171}{2020}\)
...
`A=1/(1.2)+1/(2.3)+1/(3.4)+....+1/(49.50)`
`=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50`
`=1-1/50=49/50`
\(1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\\ =\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\right]\\ =\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
ta có :
\(a-b=1.2+\left(2.3-2^2\right)+\left(3.4-3^2\right)+..+\left(98.99-98^2\right)\)
\(=2+2+3+4+..+98\)
\(=1+\left(1+2+3+..+98\right)=1+98\times\frac{99}{2}=4852\)
Dễ thôi!
Ta có: 1/1.2 = 1/1 - 1/2 ; 1/2.3 = 1/2 - 1/3 ; 1/3.4 = 1/3 - 1/4 ; ...;1/99.100 = 1/99 - 1/100
Như vậy thì bài toán trên = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/99 - 1/100
Vậy tổng trên là:
1 - 1/100
= 99/100
tk nha
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\\ =1-\dfrac{1}{10}\\ =\dfrac{10-1}{10}=\dfrac{9}{10}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=2-1/1.2+3-2/2.3+4-3/3.4+...+10-9/9.10
=1-1/2+1/2-1/3+1/3-1/4+....+1/9-1/10
=1-1/10
=9/10
A=1/1.2+1/2.3+1/3.4+..+1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
\(\frac{99}{100}\)