Cho B = \(\frac{1}{2\left(n-1\right)^2+3}\). Tìm số nguyên n để B có giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2.(n-1)^2 >/ 0 với mọi n
=>2.(n-1)^2+3 >/ 3 với mọi n
=>1/2.(n-1)^2+3 </ 1/3 với mọi n
do đó GTLN của B=1/3
Dấu "=" xảy ra<=>2.(n-1)^2=0<=>n=1
Vậy...
nho tik
\(\left(n-1\right)^2\ge0\Rightarrow2\left(n-1\right)^2\ge0\Rightarrow2\left(n-1\right)^2+3\ge3\)
=>\(B=\frac{1}{2\left(n-1\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi (n-1)2=0 <=> n-1=0 <=> n=1
Vậy \(B_{max}=\frac{1}{3}\) tại n=1
@thánh yasuo Imht: tội chi mà xét 2TH vậy, lại còn tìm n sai luôn chứ
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
B là số nguyên thì n+1 chia hết n-2
(n+1)-(n-2)chia hết n-2
n+1-n+2chia hết n-2
3chia hết n-2
n-2 thuộc Ư(3)={-1;1;-3;3}
n thuộc {1;3;-1;5}
B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2
để B lớn nhất 3/n-2 lớn nhất
nên n-2 bé nhất
n-2 là số nguyên dương bé nhất
=> n-2=1
n=3