Cho tam giác cân ABC (AB = AC). Gọi M, N, P theo thứ tự là trung điểm của AB, AC, BC. Cho Q là điểm đối xứng của P qua N. Chứng minh :
a) PMAQ là hình thang.
b) BMNC là hình thang cân
c) ABPQ là hình bình hành
d) AMPN là hình thoi
e) APCQ là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và MN=BC/2
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà CM=BN
nên BMNC là hình thang cân