K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

4 tháng 12 2021

Help me

 

12 tháng 12 2021

1: Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

12 tháng 12 2021

giúp em khúc 2,3,4 với ạ; tất cả đều cùng 1 bài

1 thì em chưa học đến tam giác cân

1: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có

CH chung

HA=HD

Do đó: ΔHAC=ΔHDC

Suy ra: CA=CD

3 tháng 12 2021

CA=CD

25 tháng 12 2021

1: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

25 tháng 12 2021

1: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

25 tháng 12 2021

THooi

26 tháng 12 2016

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

26 tháng 12 2016

dung roi

2 tháng 2 2022

Ta có :O là trung điểm của BC(gt)

           O là trung điểm của AK(OA=OK)

=>ABKC là hình bình hành(dhnb)

Mà góc BAC = 90 độ

=>ABKC là hình chữ nhật (dhnb)

=>AB=CK và góc ACK = 90 độ

Xét tam giác ABC và tam giác CKA có:

 AB=CK(cmt)

 góc BAC=góc KCA( cùng bằng 90 độ)

 AC chung

Vậy tam giác ABC = tam giác CKA(c.g.c)

b)Xét tam giác AHB và tam giác CHA có

 góc AHB = góc CHA (=90 độ)

 góc BAH =góc ACH(cùng phụ với góc B)

Vậy tam giác AHB đồng dạng tam giác CHA(g.g)

=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)

Ta có AH\(\perp\)CH

         ED\(\perp\)CH

=>AH//DE

Xét tam giác ACH có

 AH//DE

=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)

=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)

Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)

                    =>AB=AE(đpcm)

2 tháng 2 2022

-Lớp 7 chưa học Tam giác đồng dạng?

28 tháng 2 2021

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm của AD

H là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: DE//AB

c: Xét ΔEAD có 

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

Xét ΔEAC và ΔEDC có

EA=ED

EC chung

AC=DC
Do đó: ΔEAC=ΔEDC

Suy ra: \(\widehat{EAC}=\widehat{EDC}\)

7 tháng 1 2022

GT,KL tự viết (hình cũng tự vẽ)

a, Xét △AHB và △AHE có :

AH : chung

\(\widehat{AHB}=\widehat{AHE}(=90^o)\)

HB = HE (GT)

=>  △AHB = △AHE (c.g.c)

b, Xét  △AHB và △DHE có :

AH = DH(GT)

\(\widehat{AHB}=\widehat{DHE}(=90^o)\)

BH = EH (GT)

=> △AHB =  △DHE (c.g.c)

=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> DE // AB

c, Xét △AHC và △DHC có :

HC : chung

\(\widehat{AHC}=\widehat{DHC}(=90^o)\)

AH = DH (GT)
=> △AHC = △DHC (c.g.c)

=> AC = DC (2 cạnh tương ứng)

 \(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)

Xét △EAC và △EDC có :

EC : chung

\(\widehat{ECA}=\widehat{ECD}(cmt)\)

AC = DC (cmt)

=> △EAC = △EDC (c.g.c)

=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)

d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)

Xét △MEN và △DEA có :

\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)

\(\widehat{EMN}=\widehat{EDA}( so le)\)

=> △MEN = △DEA  (c.g.c)

=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)

Mà 2 góc ở vị trí đối đỉnh với nhau 

=> A , E , N thẳng hàng