K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

2p + 1, 5p + 2 cùng là các số nguyên tố
Chỉ có một số đáp ứng là số 3 vì:
2x3+1=7
5x3+2=17
Mà 7 và 17 là số nguyên tố nên p=3

13 tháng 1 2024

p=4

DD
5 tháng 12 2021

Với \(p=2\)\(5p+2=12\)không là số nguyên tố. 

Với \(p=3\)\(2p+1=7,5p+2=17\)đều là số nguyên tố, thỏa mãn. 

Với \(p>3\): khi đó \(p=3k+1\)hoặc \(p=3k+2\)với \(k\inℕ^∗\).

\(p=3k+1\)\(2p+1=2\left(3k+1\right)+1=6k+3⋮3\)mà \(2p+1>3\)nên không là số nguyên tố.

\(p=3k+2\)\(5p+2=5\left(3k+2\right)+2=15k+12⋮3\)mà \(5p+2>3\)nên không là số nguên tố. 

Vậy \(p=3\).

27 tháng 11 2021

Giải thích các bước giải:

Trường hợp 1:p=21:p=2

→2p+1=2⋅2+1=5→2p+1=2⋅2+1=5 là số nguyên tố

      2p+5=2⋅2+5=92p+5=2⋅2+5=9 không là số nguyên tố

→p=2→p=2 (loại)

Trường hợp 2:p=32:p=3

→2p+1=2⋅3+1=7→2p+1=2⋅3+1=7 là số nguyên tố

      2p+5=2⋅3+5=112p+5=2⋅3+5=11 là số nguyên tố

→p=3→p=3 (chọn)

Trường hợp 3:p>33:p>3

→p→p chia 33 dư 11 hoặc 22
Nếu pp chia 33 dư 1→p=3k+1,k∈N∗1→p=3k+1,k∈N∗

→2p+1=2(3k+1)+1=6k+3=3(2k+1)⋮3→2p+1=2(3k+1)+1=6k+3=3(2k+1)⋮3

Mà 2p+1>3→2p+12p+1>3→2p+1 là hợp số

→p=3k+1→p=3k+1 (loại)

Nếu pp chia 33 dư 2→p=3k+2,k∈N∗2→p=3k+2,k∈N∗

→2p+5=2(3k+2)+5=6k+9=3(2k+3)⋮3→2p+5=2(3k+2)+5=6k+9=3(2k+3)⋮3

Mà 2p+5>3→2p+52p+5>3→2p+5 là hợp số

→p=3k+2→p=3k+2 (loại)

⇒p>3⇒p>3 loại

12 tháng 11 2023

Với �=2p=25�+2=125p+2=12không là số nguyên tố. 

Với �=3p=32�+1=7,5�+2=172p+1=7,5p+2=17đều là số nguyên tố, thỏa mãn. 

Với �>3p>3: khi đó �=3�+1p=3k+1hoặc �=3�+2p=3k+2với �∈N∗kN.

�=3�+1p=3k+12�+1=2(3�+1)+1=6�+3⋮32p+1=2(3k+1)+1=6k+33mà 2�+1>32p+1>3nên không là số nguyên tố.

�=3�+2p=3k+25�+2=5(3�+2)+2=15�+12⋮35p+2=5(3k+2)+2=15k+123mà 5�+2>35p+2>3nên không là số nguên tố. 

Vậy �=3p=3.

19 tháng 10 2016

a,p=2.

b,p=0,2,4.

c,ban tự lm

k mik nhe

12 tháng 9 2023

Gọi d là ƯCLN(2p + 1; 4p + 1) 

⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d 

⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d

⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d

⇒ (4p + 2) - (4p + 1) ⋮ d

⇒ 4p + 2 - 4p - 1 ⋮ d

⇒ 2 - 1 ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau 

12 tháng 9 2023

 Dùng phương pháp đánh giá em nhá.

+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn);   4p + 1 = 9 (loại)

+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn);   4p + 1 = 13 (thỏa mãn)

+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:

   p = 3k + 1; p = 3k + 2 (k \(\in\)N*)

Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)

Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)

Từ những phân tích trên ta có: p = 3 

Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.

 

25 tháng 10 2020

       Bài làm :

Xét 3 trường hợp :

  • Trường hợp 1: p= 3

⇒2.p+ 1= 7

2.p+ 5= 11 ( thỏa mãn)

  • Trường hợp 2 : p= 3.k+ 1

⇒ 2.p+ 1= 2. ( 3.k+ 1) + 1= 6.k+ 2+ 1= 6.k+ 3= 3. (2.k+ 1) chia hết cho 3 và lớn hơn 3 nên là hợp số

⇒ Loại

  • Trường hợp 3 : p= 3.k+ 2

⇒ 2.p+ 5= 6.k+ 4+ 5= 6.k+ 9= 3. (2.k+ 3) chia hết cho 3 và lớn hơn 3 nên là hợp số

⇒ Loại

Vậy p= 3

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.