a)Tìm STN nhỏ nhất sao cho khi chia cho 11 dư 6 , chia cho 4 dư 1 và chia cho 19 dư 11
b) Tìm điều kiện của số nguyên a để phân số 2a+5 phần a+1 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
a) Gọi ƯCLN (21n+4 ; 14n+3) =d ( ĐK: d \(\inℕ^∗\))
=> \(\hept{\begin{cases}21n+4\\14n+3\end{cases}}\)\(⋮\)d
=> \(\hept{\begin{cases}2.\left(21n+4\right)\\3.\left(14n+3\right)\end{cases}}\)\(⋮\)d
=>\(\hept{\begin{cases}42n+8\\42n+9\end{cases}}\)\(⋮\)d
=> (42n+9) - (42n+8) \(⋮\)d
42n+9 - 42n - 8 \(⋮\)d
( 42n - 42n) + ( 9 - 8) \(⋮\)d
=> 1\(⋮\)d
=> d = 1
=> ƯCLN ( 21n+4 ; 14n+3 ) = 1
Vậy phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
b) mk k bt làm
Chúc bn hok tốt!!
Nếu đúng thì tk mk nha
\(\text{Gọi ƯCLN( 21n + 4 , 14n + 3 ) là d}\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{Phân số }\frac{21n+4}{14n+4}\text{ là phân số tối giản}\)
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Gọi số cần tỉm là a.
Theo đề bài, ta có: a + 2 chia hết cho 3 ; 4 ; 5 ; 6
Suy ra: a + 2 là BC ( 3 ; 4 ; 5 ; 6 )
BCNN ( 3 ; 4 ; 5 ; 6 ) = 60 => a + 2 = 60 . n
Do đó: a = 60 . n - 2 ; N = { 1 ; 2 ; 3 ; 4 }
Mặt khác a chia hết cho 11 lần lượt cho 1 ; 2 ; 3 ....
Ta thấy N = 7 => a = 418 chia hết cho 11.
Vậy số cần tìm là 418.
@@