K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:

$(x+1)(x+3)(x+5)(x+7)=[(x+1)(x+7)][(x+3)(x+5)]$

$=(x^2+8x+7)(x^2+8x+15)$

$=[(x^2+8x+12)-5][(x^2+8x+12)+3]$

$=(x^2+8x+12)^2+3(x^2+8x+12)-5(x^2+8x+12)-15$

$=(x^2+8x+12)^2-2(x^2+8x+12)-15$

$\Rightarrow (x+1)(x+3)(x+5)(x+7)$ chia $x^2+8x+12$ dư $-15$

14 tháng 12 2018

chưa chắc bn ơi

22 tháng 7 2016

(x+1)(x+5)(x+3)(x+7)+2002=[(x+1)(x+7)][(x+5)(x+3)]+2002

                                                 =(x2+8x+7)(x2+8x+15)+2002

                                                 =(x2+8x+7)(x2+8x+12)+3(x2+8x+7)+2002

                                                 =(x2+8x+7)(x2+8x+12)+3(x2+8x+12)+1987

                                                 =(x2+8x+10)(x2+8x+12)+1987

Vậy (x+1)(x+5)(x+3)(x+7)+2002 chia x2+x+12 dư 1987.

19 tháng 3 2020

Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)

Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)

Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013

Vậy A chia x2 + 8x + 12 dư 2013

13 tháng 9 2015

bó tay dù sao mk cũng muốn bạn tick cho mk nha

DD
28 tháng 1 2022

\(q\left(x\right)=x^2+8x+12=0\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}\)

\(f\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(f\left(x\right)=q\left(x\right)p\left(x\right)+ax+b\)

suy ra 

\(\hept{\begin{cases}f\left(-2\right)=-2a+b\\f\left(-6\right)=-6a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}-2a+b=-6\\-6a+b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-6\end{cases}}\)

Vậy số dư cần tìm là \(-6\).