1/2+1/4+1/8+....+1/1024+1/2048+1/4096=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+................+\frac{1}{2048}+\frac{1}{4096}\)
2A=\(1+\frac{1}{2}+\frac{1}{4}+....................+\frac{1}{1024}+\frac{1}{2048}\)
2A-A=\(\left(1+\frac{1}{2}+\frac{1}{4}+................+\frac{1}{1024}+\frac{1}{2048}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...............+\frac{1}{2048}+\frac{1}{4096}\right)\)
A=\(1-\frac{1}{4096}\)
A=\(\frac{4095}{4096}\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(\Leftrightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\)
Nhân 2 vào 2 vế của biểu thức A , ta được :
\(2A=2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow2A=1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^9}+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)
Lấy biểu thức 2A - A , Ta được :
\(2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{12}}\)
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
64+64=128
128+128=256
512+512=1024
2048+2048=4096
xong
Đặt \(A=1+2+4+.........+4096\)
\(2A=2+4+8+......+8192\)
\(\Rightarrow2A-A=8192-1\)
\(\Rightarrow A=8191\)
Đặt \(S=1+2+4+...+1024+2048+4096\)
\(S=1+2^1+2^2+2^3+....+2^{10}+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+....+2^{11}+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+....+2^{12}+2^{13}\right)-\left(1+2+2^2+....+2^{11}+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)
Đặt
\(S=1+2+4+...+2048+4096\)
\(S=1+2^1+2^2+...+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+...+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+...+2^{13}\right)-\left(1+2+2^2+..+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)
Gọi A=1+2+4+8+16+...+1024+2048+4096
2A=2+4+8+16+32+...+2048+4096+8192
2A-A=(2+4+8+16+32+...+2048+4096+8192)-(1+2+4+8+16+...+1024+2048+4096)
A=8192-1
A=8191
bn tham khảo tại link này nhé :
https://olm.vn/hoi-dap/question/656309.html
Đặt A=1/2+1/4+1/8+1/16+1/32+...+1/2048+1/4096
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
Ta co: 2S=2+1+1/2+1/4+...+1/2048
2S-S=2+1+1/2+1/4+...+1/2048-1-1/2-1/4-...-1/2048-1/4096
\(\Rightarrow\)S=2-1/4096 =8191/4096
Từ biểu thức trên ta được
A=1/2+1/2^2+1/2^3+....+1/2^11+1/2^12
2A-A=2(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)-(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)
A=1+1/2^2+1/2^3+....+1/2^11-1/2-1/2^2-...-1/2^12
A=1/2-1/2^12
Ủng hộ cho mình nha bạn
\(A=\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(A=\)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=\)\(2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=\)\(1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\)\(\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)