giải chi tiết giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^2-x-2020=0
=>x=(1+căn 16161)/4 hoặc x=(1-căn 16161)/4
Gọi A(1+căn 16161/4;0); B(1-căn 16161/4;0); N(0;b)
\(AB=\dfrac{\sqrt{2\cdot\sqrt{16161}}}{2};AN=\sqrt{\left(0-\dfrac{1+\sqrt{16161}}{4}\right)^2+\left(b-0\right)^2}\)
\(BN=\sqrt{\left(0-\dfrac{1-\sqrt{16161}}{4}\right)^2+\left(b-0\right)^2}\)
ΔABN vuông tại N
=>NA^2+NB^2=AB^2
=>\(\left(\dfrac{1+\sqrt{16161}}{4}\right)^2+b^2+\left(\dfrac{1-\sqrt{16161}}{4}\right)^2+b^2=\left(\dfrac{1+\sqrt{16161}}{4}-\dfrac{1-\sqrt{16161}}{4}\right)^2\)
=>b^2=-2(1-16161)/16*2=1010
=>b=căn 1010
\(8\dfrac{1}{2}=\dfrac{17}{2};9\dfrac{3}{4}=\dfrac{39}{4};12\dfrac{2}{3}=\dfrac{38}{3}=7\dfrac{5}{14}=\dfrac{103}{14}\)
a, \(2\sqrt{3}-\sqrt{4+x^2}=0\Leftrightarrow\sqrt{4+x^2}=2\sqrt{3}\)
\(\Leftrightarrow x^2+4=12\Leftrightarrow x^2=8\Leftrightarrow x=\pm2\sqrt{2}\)
b, \(\sqrt{16x+16}-\sqrt{9x+9}=0\)ĐK : x >= -1
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
c, \(\sqrt{4\left(x+2\right)^2}=8\Leftrightarrow2\left|x+2\right|=8\Leftrightarrow\left|x+2\right|=4\)
TH1 : \(x+2=4\Leftrightarrow x=2\)
TH2 : \(x+2=-4\Leftrightarrow x=-6\)
c: Ta có: \(\sqrt{4\left(x+2\right)^2}=8\)
\(\Leftrightarrow\left|x+2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Ta có : \(\frac{151515}{-313131}=\frac{151515:10101}{-313131:10101}=\frac{15}{-31}=-\frac{15}{31}\)
Vậy \(-\frac{15}{31}=\frac{151515}{-313131}\)