K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

28 tháng 5 2018

Vì GTTĐ luôn lớn hơn hoặc bằng 0

=> x - 1 + x - 3 + x - 5 + x - 7 = 8

    4x - 16 = 8

     4x       = 8 + 16 

     4x       = 24

=> x = 6

Vậy.........

28 tháng 5 2018

Sai rồi nhé , Bonking . 

\(\left|x-1\right|=\orbr{\begin{cases}x-1\left(x>0\right)\\-x+1\left(x< 0\right)\end{cases}}\)

a: |x+6|+|x-2|=8(1)

TH1: x<-6

Phương trình (1) sẽ trở thành:

-x-6+2-x=8

=>-2x-4=8

=>-2x=12

=>x=-6(loại)

TH2: -6<=x<2

Phương trình (1) sẽ trở thành:

\(x+6+2-x=8\)

=>8=8(luôn đúng)

TH3: x>=2

Phương trình (1) sẽ trở thành:

x+6+x-2=8

=>2x+4=8

=>2x=4

=>x=2(nhận)

Vậy: -6<=x<=2

b: \(\left|x-2\right|+\left|x-5\right|-3=0\)

=>\(\left|x-2\right|+\left|x-5\right|=3\left(2\right)\)

TH1: x<2

Phương trình (2) sẽ trở thành:

\(2-x+5-x=3\)

=>7-2x=3

=>2x=7-3=4

=>x=2(loại)

TH2: 2<=x<5

Phương trình (2) sẽ trở thành:

\(x-2+5-x=3\)

=>3=3(luôn đúng)

TH3: x>=5

Phương trình (2) sẽ trở thành:

x-2+x-5=3

=>2x-7=3

=>2x=10

=>x=5(nhận)

Vậy: 2<=x<=5

21 tháng 2 2018

Chép lại đề bài

\(\Rightarrow x+1+x-2+x+7=5x-10\)

\(\Rightarrow x+x+x+1-2+7=5x-10\)

\(\Rightarrow3x+6=5x-10\)

\(\Rightarrow5x-3x-10=6\)

\(\Rightarrow2x-10=6\)

\(\Rightarrow2x=6+10\)

\(\Rightarrow2x=16\)

\(\Rightarrow x=16\div2\)

\(\Rightarrow x=8\)

25 tháng 2 2018

Cảm ơn bạn nhiều nha ^^!

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2