(-1)+2+(-3)+4+(-5)+6+...+(-2021)+2022 giúp mình với :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2x-15=-25`
`2x=-10`
`x=-5`
___________
`3/5<x/10<4/5`
`3/5=(3xx10)/(5xx10)=30/50`
`x/10=(5x)/(10xx5)=(5x)/50`
`4/5=(4xx10)/(5xx10)=40/50`
`=>30/50<(5x)/50<40/50`
`=>30<5x<40`
`=>x=7`
Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$
$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$
$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$
$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$
$=1+6(-1+2^3-2^6+...+2^{2019})$
Suy ra $A$ chia $6$ dư $1$/
=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023
A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)
Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)
TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1
TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)
TS = 2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))
A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)
A = 2023
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
số phân tử là :
(2022-1):1=2021
vậy : -1 + 2 -3 + 4 -5 + 6 - ... - 2021 + 2022
= (-1+2)-(-3+4),......-(-2021+2022)
= -1 . 2021
= -2021