K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

xl , e mới lớp 7 thôi ạ

18 tháng 2 2016

bai nay thi hoi kho tui chua lam duoc 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Câu a/

Để $\frac{7}{2n+1}$ là phân số tối giản thì $ƯCLN(7,2n+1)=1$

$\Rightarrow 2n+1\neq 7k$ với $k$ là số tự nhiên bất kỳ

$\Rightarrow n\neq \frac{7k-1}{2}$ với $k$ là số tự nhiên bất kỳ.

b. 

Gọi $d=ƯCLN(n+7, n+2)$

$\Rightarrow n+7\vdots d; n+2\vdots d$

$\Rightarrow (n+7)-(n+2)\vdots d$

$\Rightarrow 5\vdots d$

$\Rightarrow d=1$ hoặc $d=5$

Để phân số đã cho tối giản thì $d\neq 5$

Điều này xảy ra khi $n+2\not\vdots 5$

$\Leftrightarrow n\neq 5k-2$ với $k$ là số tự nhiên bất kỳ.

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.