tam giac ABC có phải là tam giác vuông ko nếu các cạnh AB,AC,BC tỉ lệ với 9,12,15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có: \(\frac{AB}{9}=\frac{AC}{12}=\frac{BC}{15}\)
Đặt \(\frac{AB}{9}=\frac{AC}{12}=\frac{BC}{15}=k\Rightarrow AB=9k;AC=12k;BC=15k\)
Ta có: \(AB^2+AC^2=\left(9k\right)^2+\left(12k\right)^2=9^2k^2+12^2k^2=k^2\left(9^2+12^2\right)=225k^2\left(1\right)\)
\(BC^2=\left(15k\right)^2=225k^2\left(2\right)\)
Từ (1) và (2) => \(AB^2+AC^2=BC^2\)
=> tam giác ABC vuông tại A (theo định lý pytago đảo)
AB;AC;BC tỉ lệ với 9;12;15(gt)
=>AB/9=AC/12=BC/15
=>AB^2/9^2=AC^2/12^2=BC^2/15^2
=>AB^2/81=AC^2/144=BC^2/225
=>AB^2+AC^2/81+144=BC^2/225
=>AB^2+AC^2/225=BC^2/225
=>AB^2+AC^2=BC^2
=> Tam giác ABC là tam giác vuông tạiA
Ta có: AB2 + AC2 = 92 + 122 = 81 + 144 = 225
BC2 = 152 = 225
Ta thấy : AB2 + AC2 = BC2
Theo định lý Pi - ta - go đảo, t/giác ABC là t/giác vuông tại A.
\(TC:\)
\(BC^2=15^2=225\)
\(AB^2+AC^2=9^2+12^2=255\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\perp A\)
Vì AB,AC,BC tỉ lệ với 9;12;15 nên \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)
Đặt \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}=k\)
nên \(\left\{{}\begin{matrix}AB=9k\\AC=12k\\BC=15k\end{matrix}\right.\)
Vì \(\left(15k\right)^2=\left(9k\right)^2+\left(12k\right)^2\)
nên \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
tam giác abc là tam giác vuông khi các cạnh ab,ac,bc tỉ lệ với câu a,b
Đặt AB/9=AC/12=BC/15=k
=>AB=9k; AC=12k; BC=15k
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Ta có các cạnh AB; AC; BC tỉ lệ với 9; 12 và 15
⇒ \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)
Đặt \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}=k\)
⇒ \(\left\{{}\begin{matrix}AB=9k\\AC=12k\\BC=15k\end{matrix}\right.\)
Ta có:
\(AB^2+AC^2=BC^2\)
\(\left(9k\right)^2+\left(12k\right)^2=\left(15k\right)^2\)
\(81k^2+144k^2=225k^2\)
\(225k^2=225k^2\)
Áp dụng định lý Pytago đảo
⇒ Tam giác ABC vuông tại A
Ta có : AB2 + AC2= 92 + 122=225
BC2=152=225
Vì 225=225=>AB2+AC2=BC2 theo định lý pythagore
Vậy tam giác ABC vuông tại A
theo bài ta có: AB:AC:BC=9:12:15
=>AB/9=AC/12=BC/15
đặt các tỉ số trên=k
=>AB=9k;AC=12k;BC=15k
xét: BC2=(15k)2=152.k2=225.k2 (1)
AB2+AC2=(9k)2+(12k)2=k2.(92+122)=225.k2(2)
từ (1);(2)=>BC2=AB2+AC2
=>tam giác ABC vuông tại A (đ/l Pytagođảo)