Cho tam giác ABC có AD phân giác . Qua D kẻ đường thẳng song song AB cắt AC tại E .Qua E kẻ đường thẳng song song , BC cắt AB tại K . Chứng minh :
A) tam giác AED cân
B) AE = BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\)có \(AD\)là phân giác
\(\Rightarrow\)\(\widehat{BAD}=\widehat{EAD}\) (1)
\(ED\)// \(AB\)\(\Rightarrow\)\(\widehat{EDA}=\widehat{DAB}\)(so le trong) (2)
Từ \(\left(1\right),\left(2\right)\)suy ra: \(\widehat{EAD}=\widehat{EDA}\)
\(\Rightarrow\)\(\Delta AED\)cân tại \(E\)
a) \(\Delta ABC\)có \(AD\)là phân giác
\(\Rightarrow\widehat{BAD}\)\(=\widehat{EAD}\)(1)
\(ED//AB\Rightarrow\widehat{EDA}\)\(=\widehat{DAB}\)(so le trong) (2)
Từ \(\left(1\right),\left(2\right)\)suy ra:\(\widehat{EAD}\)\(=\widehat{EDA}\)
\(\Rightarrow\Delta AED\)cân tại \(E\)
Hk tốt,
k nhé
1: góc EDA=góc BAD
=>góc EDA=góc EAD
=>ΔEAD cân tại E
2:
Xét tứ giác BKED có
BK//ED
KE//BD
=>BKED là hbh
=>BK=ED và KE=BD
Xét ΔBKD và ΔEDK có
BK=ED
KD chung
BD=EK
=>ΔBKD=ΔEDK
1: góc EDA=góc BAD
góc EAD=góc BAD
=>góc EDA=góc EAD
=>ΔEAD cân tại E
2: Xét tứ giác BKED có
BK//ED
KE//BD
=>BKED là hình bình hành
Xét ΔBKD và ΔEDK có
BK=ED
BD=EK
DK chung
=>ΔBKD=ΔEDK
3: BK+DE=DE+EA>AD