K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=a^3+b^3+c^3-a-b-c

=a^3-a+b^3-b+c^3-c

=a(a-1)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

Vì a;a-1;a+1 là 3 số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

Vì b;b-1;b+1 là 3 số liên tiếp

nên b(b-1)(b+1) chia hết cho 3!=6

Vì c;c-1;c+1 là 3 số liên tiếp

nên c(c-1)(c+1) chia hết cho 3!=6

=>A chia hết cho 6

12 tháng 9 2015

 

f(n) = n^5-5n^3+4n

=n5-n3-4n3+4n

=n3.(n2-1)-4n.(n2-1)

=n(n2-1)(n2-4)

=n.(n-1)(n+1)(n-2)(n+2)

ta có: n+1 và n là hai số nguyên liên tiếp nên: n.(n-1) chia hết cho 2

n-1;n;n+1 là ba số nguyên liên tiếp nên: n(n-1)(n+1) chia hết cho 3

n-1;n;n+1;n+2 là bốn số nguyên liên tiếp nên: n(n-1)(n+1)(n+2) chia hết cho 4

n-2;n-1;n;n+1;n+2 là năm số nguyên liên tiếp nên n.(n-1)(n+1)(n-2)(n+2) chia hết cho 5

Suy ra: n.(n-1)(n+1)(n-2)(n+2) chia hết cho 2.3.4.5=120

Vậy f(n) chia hết cho 129 với mọi n thuộc Z