K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IEbài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HNbài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC...
Đọc tiếp

 

 

bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IE

bài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HN

bài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC tại I. CMR:KI//CD

bài 4: cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Lấy M,N thuộc BH và DC sao cho BM/MH =CN/ND.CMR:góc AMN = 90 độ

bài 5:cho tam giác ABC đều. Một đường song song AC cắt AB và BC theo thứ tự tại I và J, gọi K là trung điểm AJ và O là trọng tâm tam giac BIJ. Tính các góc tam giác OKC

anh chị nào thông minh giải hộ em mấy bài này với, em hứa là sẽ có hoa hồng cho anh chị.

0
6 tháng 3 2020

A B C D M N E Q F P K S

a) Dễ thấy PE là đường trung bình của \(\Delta ABD\)\(\Rightarrow PE=\frac{1}{2}BD\)

Tương tự : \(QE=\frac{1}{2}AC;QF=\frac{1}{2}BD;PF=\frac{1}{2}AC\)

Theo bài toán, BD = AC nên \(PE=EQ=QF=PF\)

Suy ra PEQF là hình thoi

b) Gọi K là trung điểm của BD . Đường thẳng ME cắt NF tại S

Vì PEQF là hình thoi nên \(EF\perp PQ\)( * )

Xét \(\Delta KQP\)và \(\Delta SFE\)có :

\(ME\perp AB\) ; \(PK//AB\)\(\Rightarrow ME\perp PK\)

Tương tự : \(NF\perp QK\)

\(\Rightarrow\Delta KQP\approx\Delta SFE\)( góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{KP}{KQ}=\frac{AB}{CD}\)( 1 )

Vì \(\Delta MAB\approx\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đồng dạng bằng tỉ số đường cao ) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{SE}{SF}=\frac{ME}{NF}\Rightarrow EF//MN\)( ** )

Từ ( * ) và ( ** ) suy ra : \(PQ\perp MN\)

5 tháng 3 2020

Gọi E và F là trung điểm của AB và DC tương ứng.

Ta cm 2 vấn đề sau:

1) EF vuông góc với PQ

2) EF // MN

Sơ lược hướng đi là như vậy nha, mai chị sẽ đăng bài cụ thể  nhé

Hình vẽ thì bạn tự dựng nha.

Gọi E,F là trung điểm của AB,CD tương ứng

Lần lượt cm các điều sau:

    Tương tự: 

   Cộng theo vế (1) và (2) suy ra 

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
2 tháng 7 2019

A B C D M N F E G H I K

Gọi G,H,K lần lượt là trung điểm các cạnh AB,CD,AC. Giao điểm của MG và NH là I.

Ta thấy \(\Delta\)CDN cân tại N có H là trung điểm cạnh CD => NH vuông góc CD => IH vuông góc CD

Mà EK là đường trung bình trong \(\Delta\)ACD nên IH vuông góc EK (1)

Dễ dàng chứng minh tứ giác EHFG là hình thoi => EF vuông góc GH (2)

Từ (1) và (2) suy ra ^IHG = ^KEF (Vì 2 góc này cùng phụ với góc hợp bởi EF và IH)

Tương tự ^IGH = ^KFE. Từ đó \(\Delta\)GIH ~ \(\Delta\)FKE (g.g) => \(\frac{IG}{IH}=\frac{KF}{KE}=\frac{AB}{CD}=\frac{BG}{CH}\)

Ta lại có \(\Delta\)MGB ~ \(\Delta\)NHC (g.g)  => \(\frac{BG}{CH}=\frac{MG}{NH}\). Do vậy \(\frac{IG}{IH}=\frac{MG}{NH}\)

Áp dụng ĐL Thales đảo vào \(\Delta\)MIN ta được GH // MN

Mà EF vuông góc GH (cmt) nên EF vuông góc MN (đpcm).

16 tháng 9 2019

tự kẻ hình : 

có M; N lần lượt là trung điểm của AB; AC (gt)

=> MN là đường tb của tam giác ABC (đn)

=> MN // BC (đl)

góc BCNM là tứ giác

=> BCNM là hình thang (đn)

17 tháng 9 2019

@Soái muội:Uyên làm đúng rồi đó bạn! Làm theo bạn ấy đi