CMR : NẾU 3A + 4B + 5C CHIA HẾT CHO 11 VỚI GIÁ TRỊ TỰ NHIÊN CỦA , B, C THÌ BIỂU THỨC 9A + B + 4C VỚI CÁC GIÁ TRỊ A,B,C CŨNG CHI HẾT CHO 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9a + b + 4c = 3(3a + 4b + 5c) - 11(b + c) = 3*11*N - 11(b + c) = 11*(3*N - b - c) chia hết cho 11
9a+b+4c=3(3a+4b+5c)-11(b+c=3*11*N-11(b-c)=11*(3*N-b-c) chia het co 11
lam dung k minh ngay nhe
xét hiệu: 4.(9a+b+4c)-(3a+4b+5c)
rùi làm như bình thường ngọc nhé,hà phg đây
Nếu 3a + 4b + 5c chia hết cho 11
=> 3(3a + 4b + 5c) = 9a + 12b + 15c chia hết cho 11
Xét :
9a + 12b + 15c - ( 11b + 11c) = 9b + 1b + 4c = 9b + b + 4c(điều phải chứng minh)
3a + 4b + 5c \(⋮\) 11
\(\Rightarrow\)3.(3a + 4b + 5c) = 9a + 12b + 15c \(⋮\) 11
\(\Rightarrow\) (9a + 12b + 15c) - (11b + 11c) = 9a + b + 4c \(⋮\)11
Ta có: \(\left(3a+4b+5c\right)⋮11\)
\(\Rightarrow3\left(3a+4b+5c\right)⋮11\)(1)
Ta lại có: \(11\left(b+c\right)⋮11\forall b,c\)(2)
Từ (1) và (2) suy ra \(3\left(3a+4b+5c\right)-11\left(b+c\right)⋮11\)
hay \(9a+b+4c⋮11\)(đpcm)