Tìm x :
a) (x2 - 1).(x2 - 4) <0
b) -21.( x + 3 ) + 53 = 8x - 3.(-16)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
a: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x^2-3\right)=0\)
\(\Leftrightarrow x^3-27-x^3+3x=0\)
\(\Leftrightarrow x=9\)
b: Ta có: \(8x^4+x=0\)
\(\Leftrightarrow x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)\left(4x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Lời giải:
a. $(x^2-9)(5x+15)=0$
$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$
$\Rightarrow x^2=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$
$\Rightarrow x=-3$
b.
$x^2-8x=0$
$\Rightarrow x(x-8)=0$
$\Rightarrow x=0$ hoặc $x-8=0$
$\Rightarrow x=0$ hoặc $x=8$
c.
$5+12(x-1)^2=53$
$12(x-1)^2=53-5=48$
$(x-1)^2=48:12=4=2^2=(-2)^2$
$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$
d.
$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$
$\Rightarrow x=11$ hoặc $x=-1$
e.
$(3x-5)^3=64=4^3$
$\Rightarrow 3x-5=4$
$\Rightarrow 3x=9$
$\Rightarrow x=3$
f.
$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$
$2^{4x}(1+8)=144$
$2^{4x}.9=144$
$2^{4x}=144:9=16=2^4$
$\Rightarrow 4x=4\Rightarrow x=1$
a) Thực hiện rút gọn VT = -2x – 64
Giải phương trình -2x – 64 = 0 thu được x = -32.
b) Thực hiện rút gọn VT = -62 x +12
Giải phương trình -62x + 12 = -50 thu được x = 1.
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a) \(\left(x+2\right)^3-x^2\left(x+6\right)=0\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=0\)
\(\Leftrightarrow12x+8=0\)
\(\Leftrightarrow12x=-8\)
\(\Leftrightarrow x=-\dfrac{8}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x\left(x^2-1\right)=36x^2-27x\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\)
\(\Leftrightarrow8x^3-8x^3+36x^2-36x^2+54x+27x+8x+27=0\)
\(\Leftrightarrow89x+27=0\)
\(\Leftrightarrow x=-\dfrac{27}{89}\)
c) \(\left(2-x\right)^3+\left(2+x\right)^3-12x\left(x+1\right)=0\)
\(\Leftrightarrow8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x^2-12x=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2+6x^2-12x^2\right)-\left(12x-12x\right)+12x+\left(8+8\right)=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow x=-\dfrac{16}{12}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
`#040911`
`a)`
`(x + 2)^3 - x^2(x + 6) = 0`
`<=> x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 = 0`
`<=> (x^3 - x^3) + (6x^2 - 6x^2) + 12x = 0`
`<=> 12x = 0`
`<=> x = 0`
Vậy, `x = 0.`
`b)`
`(2x + 3)^3 - 8x(x - 1)(x + 1) = 9x(4x - 3)`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x(x^2 - 1) = 36x^2 - 27x`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x^3 + 8x - 36x^2 + 27x = 0`
`<=> (8x^3 - 8x^3) + (36x^2 - 36x^2) + (54x + 8x + 27x) + 27 = 0`
`<=> 89x + 27 = 0`
`<=> 89x = -27`
`<=> x = -27/89`
Vậy, `x = -27/89`
`c)`
`(2 - x)^3 + (2 + x)^3 - 12x(x + 1) = 0`
`<=> 8 - 12x + 6x^2 - x^3 + 8 + 12x + 6x^2 + x^3 - 12x^2 - 12x = 0`
`<=> (-x^3 + x^3) + (12x - 12x - 12x) + (6x^2 + 6x^2 - 12x^2) + (8 + 8)=0`
`<=> -12x + 16 = 0`
`<=> -12x = -16`
`<=> 12x = 16`
`<=> x=4/3`
Vậy, `x = 4/3.`
câu a nên sử dụng bất đẳng thức lớp 8, bạn mới học lớp 6 nên mình giải ra bạn sẽ ko hiểu
b) -21x - 63 + 53 = 8x + 48
-21x -10 = 8x + 48
-29x -58 = 0
-29x = 58
x = -2