Chứng minh rằng: 3 mũ n+1 + 3 mũ n+2 + 3 mũ n+3 chia hết cho 13 với mọi số tự nhiên n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671
S là : ( 2014 + 4 ) x 671 : 2 = 677039
b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )
c) \(M=2+2^2+2^3+...+2^{20}\)
\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)
\(2M=2^2+2^3+...+2^{21}\)
\(2M-M=2^{21}-2\)
Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại
\(\Rightarrow2^{21}\)có tận cùng là 2
\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5
\(\Rightarrow M⋮5\)
B = (n^2 - 2n + 1)^3
= [(n-1)^2]^3
= (n-1)^6 ⋮ (n - 1)^2
đpcm
\(B=\left(n^2-2n+1\right)^3=\left[\left(n-1\right)^2\right]^3=\left(n-1\right)^6\)
\(B\div\left(n-1\right)^2=\left(n-1\right)^6\div\left(n-1\right)^2=\left(n-1\right)^4\)
=> Đpcm
A = 3 + 32 + ...... + 360
A = ( 3 + 32 ) + .....(359 + 360 )
A = ( 3 + 32 ) + ........+ 358 . ( 3 + 32 )
A = 12 + ....... + 358 . 12
A = 12 . ( 1+ ....... + 358 ) : 4 ( đpcm )
Nguyễn Hiền Minh mik la chu nick do ( nhug no bi mat vi quen luu ) nen mik cam on bn :V
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
\(3^{n+1}+3^{n+2}+3^{n+3}\)
\(=3^{n+1}\left(1+3+3^2\right)\)
\(=3^{n+1}.13⋮13\forall n\inℕ\)