K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

\(=\lim\limits_{x\rightarrow0}\dfrac{\left(x^2+\pi^{21}\right)\left(1-2x\right)^{\dfrac{1}{7}}-\pi^{21}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{7}\left(1-2x\right)^{-\dfrac{6}{7}}.\left(-2\right)\left(x^2+\pi^{21}\right)+2x\left(1-2x\right)^{\dfrac{1}{7}}}{1}\)

\(=\dfrac{1}{7}.\left(-2\right).\pi^{21}=...\)

 

NV
5 tháng 2 2021

Chúng ta tính giới hạn sau:

\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}\)

Cách đơn giản nhất là sử dụng L'Hopital:

\(\lim\limits_{x\rightarrow1}\dfrac{1-x^{\dfrac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{1}{n}x^{\dfrac{1}{n}-1}}{-1}=\dfrac{1}{n}\)

Phức tạp hơn thì tách mẫu theo hằng đẳng thức

\(=\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[x]{n}}{\left(1-\sqrt[n]{x}\right)\left(1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}}=\dfrac{1}{n}\)

Tóm lại ta có:

\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}=\dfrac{1}{n}\)

Do đó:

\(I_1=\lim\limits_{x\rightarrow1}\left(\dfrac{1-\sqrt[2]{x}}{1-x}\right)\left(\dfrac{1-\sqrt[3]{x}}{1-x}\right)...\left(\dfrac{1-\sqrt[n]{x}}{1-x}\right)=\dfrac{1}{2}.\dfrac{1}{3}...\dfrac{1}{n}=\dfrac{1}{n!}\)

Câu 2 cũng vậy: L'Hopital hoặc tách hằng đẳng thức trâu bò (thôi L'Hopital đi cho đỡ sợ)

\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(\sqrt{1+x^2}+x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}+1\right)-n\left(\sqrt{1+x^2}-x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}-1\right)}{1}\)

\(=\dfrac{n.1-n\left(-1\right)}{1}=2n\)

6 tháng 2 2021

Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)

\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\) 

Giờ thay x vô là được

\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)

\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)

28 tháng 4 2017

Tôi chẳng thể hiểu nổi

a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)

\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)

b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)

 

19 tháng 2 2023

lỗi gõ câu a

NV
1 tháng 3 2021

\(A=\lim\limits_{x\rightarrow0}\dfrac{\left(x^2+2017\right)\left(\sqrt[5]{1-5x}-1\right)+x^2}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{5x\left(x^2+2017\right)}{\sqrt[5]{\left(1-5x\right)^4}+\sqrt[5]{\left(1-5x\right)^3}+\sqrt[5]{\left(1-5x\right)^2}+\sqrt[5]{1-5x}+1}+x^2}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(-\dfrac{5\left(x^2+2017\right)}{\sqrt[5]{\left(1-5x\right)^4}+\sqrt[5]{\left(1-5x\right)^3}+\sqrt[5]{\left(1-5x\right)^2}+\sqrt[5]{1-5x}+1}+x\right)\)

\(=-2017\)

1 tháng 3 2021

dễ thấy hàm số trên có dạng 0/0

áp dụng quy tắc l'Hôpital 

\(A=_{\lim\limits_{x\rightarrow0}\dfrac{\left(x^2+2017\right)\sqrt[5]{1-5x}-2017}{x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\left(x^2+2017\right)\sqrt[5]{1-5x}-2017\right)'}{\left(x\right)'}}\)

\(A=\lim\limits_{x\rightarrow0}\dfrac{-x^2-2017}{\sqrt[5]{\left(1-5x\right)^4}}+2x\sqrt[5]{1-5x}=\dfrac{-2017}{1}=-2017\)

24 tháng 1 2021

a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)

\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)

b/ Xet day :\(S=x+x^2+....+x^{2021}\)

Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)

 

 

 

24 tháng 1 2021

Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi

Xet day: \(S=x+x^2+...+x^{2021}\)

\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)

L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)

Is that true :v?

 

AH
Akai Haruma
Giáo viên
11 tháng 3 2018

Lời giải:

Ta có:

Áp dụng công thức lượng giác: \(\sin (a-b)=\sin a\cos b-\cos a\sin b\)

thì:

\(\sqrt{3}\sin x-\cos x=-2\left(\frac{1}{2}\cos x-\frac{\sqrt{3}}{2}\sin x\right)=-2\left(\sin \frac{\pi}{6}\cos x-\cos \frac{\pi}{6}\sin x\right)\)

\(=-2\sin \left(\frac{\pi}{6}-x\right)\)

Do đó: \(\lim_{x\to \frac{\pi}{6}}\frac{\sqrt{3}\sin x-\cos x}{\sin (\frac{\pi}{3}-2x)}=-2\lim_{x\to \frac{\pi}{6}}\frac{\sin \left ( \frac{\pi}{6}-x \right )}{\sin \left [ 2(\frac{\pi}{6}-x) \right ]}\)

\(=-\lim_{x\to \frac{\pi}{6}}\frac{\sin \left ( \frac{\pi}{6}-x \right )}{\frac{\pi}{6}-x}.\lim_{x\to \frac{\pi}{6}}\frac{1}{\frac{\sin\left [ 2(\frac{\pi}{6}-x) \right ]}{2(\frac{\pi}{6}-x)}}=-1.1.1=-1\)

(sử dụng công thức \(\lim_{t\to 0} \frac{\sin t}{t}=1\) . Trong TH bài toán \(x\to \frac{\pi}{6}\Rightarrow \frac{\pi}{6}-x\to 0\) )