Cho tam giác ABC có AB < AC . Lấy E thuộc AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm D sao cho BD = EC
a) Chứng minh tam giác ADC cân
b) Kẻ AH vuông góc với BE tại H , AH cắt DC tại K . Chứng minh AK là đường trung trực của DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔADE có
AB=AD
\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)
Do đó: ΔAHB=ΔAKD
=>BH=DK
c: Ta có: ΔAHB=ΔAKD
=>\(\widehat{HAB}=\widehat{DAK}\)
mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)
nên \(\widehat{DAK}+\widehat{DAH}=180^0\)
=>K,A,H thẳng hàng
a: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
b: Ta có: ΔBDE=ΔBCE
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
Ta có: BD=BC
=>B nằm trên đường trung trực của CD(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của CD(3)
Từ (1),(2),(3) suy ra B,E,K thẳng hàng
=>B,E,K cùng nằm trên đường trung trực của DC
=>EK\(\perp\)DC
c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)
nên ΔAHD vuông cân tại H
Xét ΔBDC có BD=BC
nên ΔBCD cân tại B
mà \(\widehat{BDC}=45^0\)
nên ΔBCD vuông cân tại B
=>\(\widehat{ABC}=90^0\)
Hoặc bạn có thể làm thế này !
Do 9 đường thẳng đó không có 2 đt nào song song. Gọi các đường thẳng đó là a, b, c, d, e, f, g, h, i. Gọi I là giao điểm của a và b.
Nếu 7 đt còn lại đi qua I coi như bài toán được giải quyết vì khi đó xuất hiện 18 góc nhỏ chính là 9 cặp góc đối đỉnh. Mà số đo góc I = 360 độ. Vậy 360:18 = 20 độ. Điều này chứng tỏ có ít nhất 2 góc nhỏ hơn hoặc bằng 20 độ.Hay 2 đường thẳng mà góc nhọn giữa chúng nhỏ hơn hoặc bằng 20 độ.
Nếu 7 đường thẳng đó chưa đi qua I. Ta tiến hành tạo ra các đường thẳng song song với 7 đường trên nhưng đi qua I. Lúc này lời giải tương tự trên
Lưu ý: Đề cần cải chính một chút là nhỏ thua hoặc bằng 20 độ. Trường hợp đặc biệt khi các đường thẳng đó lần lượt quay quanh I một góc 20 độ thì ta có 18 góc bằng nhau và bằng 20 độ mà không nhỏ hơn 20 độ.
Học tốt !Lyn Lee
a: XétΔADC có AD=AC
nên ΔADC cân tại A
b: Ta có: ΔABE cân tại A
mà AH là đường cao
nên AH là đường phân giác
=>AK là phân giác của góc DAC
mà ΔADC cân tại A
nên AK là đường trung trực của DC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Ta có: AD=AB+BD(B nằm giữa A và D)
AC=AE+EC(E nằm giữa A và C)
mà AB=AE(gt)
và BD=CE(gt)
nên AD=AC
Xét ΔADC có AD=AC(cmt)
nên ΔADC cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABE có AB=AE(gt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABE cân tại A(cmt)
nên \(\widehat{ABE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)
Ta có: ΔADC cân tại A(cmt)
nên \(\widehat{ADC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABE}=\widehat{ADC}\)
mà \(\widehat{ABE}\) và \(\widehat{ADC}\) là hai góc ở vị trí đồng vị
nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BE//DC(cmt)
BE\(\perp\)AK(gt)
Do đó: AK\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Ta có: ΔADC cân tại A(cmt)
mà AK là đường cao ứng với cạnh đáy DC(cmt)
nên AK là đường trung trực của DC(Định lí tam giác cân)(Đpcm)
a) Ta có: AD=AB+BD(B nằm giữa A và D)
AC=AE+EC(E nằm giữa A và C)
mà AB=AE(gt)
và BD=CE(gt)
nên AD=AC
Xét ΔADC có AD=AC(cmt)
nên ΔADC cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABE có AB=AE(gt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABE cân tại A(cmt)
nên ˆABE=1800−ˆA2ABE^=1800−A^2(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)
Ta có: ΔADC cân tại A(cmt)
nên ˆADC=1800−ˆA2ADC^=1800−A^2(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)
Từ (1) và (2) suy ra ˆABE=ˆADCABE^=ADC^
mà ˆABEABE^ và ˆADCADC^ là hai góc ở vị trí đồng vị
nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BE//DC(cmt)
BE⊥⊥AK(gt)
Do đó: AK⊥⊥DC(Định lí 2 từ vuông góc tới song song)
Ta có: ΔADC cân tại A(cmt)
mà AK là đường cao ứng với cạnh đáy DC(cmt)
nên AK là đường trung trực của DC(Định lí tam giác cân)