OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm hai số nguyên dương x,y thỏa mãn :
a) x= 3y+5 b) (x+11y) là số nguyên tố
a) Đặt \(y=k\left(k\inℕ\right)\)
\(\Rightarrow x=3k+5\)
Vậy PT có vô số nghiệm dạng \(\hept{\begin{cases}x=3k+5\\y=k\end{cases}\left(k\in N\right)}\)
b) Vô số nghiệm ví dụ như:
\(\left(x,y\right)\in\left\{\left(2;1\right);\left(1;2\right)...\right\}\)
Tìm x,y thỏa mãn :
a) x = 3y+5 b) (x+11y) là số nguyên tố
Tìm hai số nguyên dương x,y sao cho thỏa mãn cả 3 điều kiện sau :
a)(x+3) chia hết cho y ; b) x=3y+5 ;c) (x+11y) là số nguyên tố
Mình cần gấp
Ai nhanh nhất mình tick cho
Tìm hai số nguyên dương \(x\) và \(y\)thỏa mãn cả ba điều kiện sau :
a) \(\left(x+3\right)⋮y\)
b) \(x=3y+5\)
c) \(\left(x+11y\right)\) là số nguyên tố
1 Tìm số nguyên x sao cho 4x + 3 chia hết cho x - 2
2 Tìm hai số nguyên dương x và y thoả mãn cả ba điều kiện sau
a) ( x + 3 ) \(⋮\)y b) x = 3y + 5 c) ( x + 11y ) là số nguyên tố
:Tìm các số nguyên x, y thỏa mãn: x^4+x^2-y^2+y+10 .Choa,b,c là các số nguyên dương ,nguyên tố cùng nhau và thỏa mãn
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
a) Đặt \(y=k\left(k\inℕ\right)\)
\(\Rightarrow x=3k+5\)
Vậy PT có vô số nghiệm dạng \(\hept{\begin{cases}x=3k+5\\y=k\end{cases}\left(k\in N\right)}\)
b) Vô số nghiệm ví dụ như:
\(\left(x,y\right)\in\left\{\left(2;1\right);\left(1;2\right)...\right\}\)