K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2021

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai

 

NV
18 tháng 9 2021

Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:

\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)

\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)

Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)

Cộng vế:

\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)

\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)

NV
18 tháng 9 2021

Sau vài phút cố gắng thì khẳng định đề bài của em bị sai

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

29 tháng 12 2021

\(1,ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2y^2=y^3+1\\2x^2y^2=x^3+1\end{matrix}\right.\\ \Leftrightarrow x^3+1=y^3+1\\ \Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay vào PT 1

\(\Leftrightarrow2x^4=x^3+1\\ \Leftrightarrow2x^4-x^3-1=0\\ \Leftrightarrow2x^4-2x^3+x-1=0\\ \Leftrightarrow\left(2x^3+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^3=-\dfrac{1}{2}\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt[3]{-\dfrac{1}{2}}\\x=y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\sqrt[3]{-\dfrac{1}{2}};\sqrt[3]{-\dfrac{1}{2}}\right);\left(1;1\right)\)

\(2,ĐK:x,y\ge1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+\sqrt{y-1}=\dfrac{1}{2}\\2\left(y-1\right)+\sqrt{x-1}=\dfrac{1}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}2a^2+b=\dfrac{1}{2}\\2b^2+a=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow2\left(a-b\right)\left(a+b\right)-\left(a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(2a+2b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a+2b=1\end{matrix}\right.\)

Với \(a=b\Leftrightarrow x-1=y-1\Leftrightarrow x=y\)

Thay vào \(PT\left(1\right)\Leftrightarrow2x+\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2\sqrt{x-1}=5-4x\)

\(\Leftrightarrow4x-4=25-40x+16x^2\\ \Leftrightarrow16x^2-44x+29=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y=\dfrac{11+\sqrt{5}}{8}\left(tm\right)\\x=y=\dfrac{11-\sqrt{5}}{8}\left(tm\right)\end{matrix}\right.\)

Với \(2a+2b=1\Leftrightarrow b=\dfrac{1}{2}-a\Leftrightarrow\sqrt{y-1}=\dfrac{1}{2}-\sqrt{x-1}\)

Thay vào \(PT\left(1\right)\Leftrightarrow2x+\dfrac{1}{2}-\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2x-2=\sqrt{x-1}\)

\(\Leftrightarrow4x^2-8x+4=x-1\\ \Leftrightarrow4x^2-9x+5=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\Rightarrow y=1\left(tm\right)\\x=1\Rightarrow y=\dfrac{5}{4}\left(tm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{11+\sqrt{5}}{8};\dfrac{11+\sqrt{5}}{8}\right);\left(\dfrac{11-\sqrt{5}}{8};\dfrac{11-\sqrt{5}}{8}\right);\left(\dfrac{5}{4};1\right);\left(1;\dfrac{5}{4}\right)\)

26 tháng 12 2021

\(1,HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)+\left(\dfrac{1}{y}-\dfrac{1}{x}\right)=0\\2y=x^3+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\dfrac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow2y=y^3+1\Leftrightarrow y^3-2y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{-1+\sqrt{5}}{2}\\y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right);\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right)\)

\(2,HPT\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x^2+y^2\right)}+2\sqrt{xy}=16\\x+y+2\sqrt{xy}=16\end{matrix}\right.\\ \Leftrightarrow\sqrt{2\left(x^2+y^2\right)}=x+y\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\\ \Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\)

Vậy \(\left(x;y\right)=\left(4;4\right)\)

26 tháng 12 2021

\(3,\text{Sửa: }\left\{{}\begin{matrix}\sqrt{x^2+3}+\left|y\right|=\sqrt{3}\left(1\right)\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\left(2\right)\end{matrix}\right.\)

Ta thấy \(\sqrt{x^2+3}\ge\sqrt{3};\left|y\right|\ge0\Leftrightarrow VT\left(1\right)\ge\sqrt{3}=VP\left(1\right)\)

Dấu \("="\Leftrightarrow x=y=0\)

Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5}+0=\sqrt{5}\left(tm\right)\)

Vậy \(\left(x;y\right)=\left(0;0\right)\)

NV
13 tháng 12 2020

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

NV
13 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...