Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC
a) Tính độ dài MN? Chứng minh MBNC là hình thang cân
b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành
c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật
d) Chứng minh AMPN là hình thoi
a. MN = ?
Trong ΔABC có:
M là trung điểm AB (gt)
N là trung điểm AC (gt)
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC (t/c)
Mà BC = 6cm (gt)
⇒ MN=BC/2=6/2=3(cm)
C/m: BMNC là hình thang cân
Có MN là đường trung bình ΔABC
⇒ MN//BC
⇒ BMNC là hình thang
Mà góc ABC = góc ACB (ΔABC cân tại A)
⇒ BMNC là hình thang cân (DHNB)
b. C/m: ABCK là hình bình hành
Xét tứ giác ABCK có:
N là trung điểm AC (gt)
N là trung điểm BK (K đ/x với B qua M)
⇒ ABCK là hình bình hành (DHNB)
c. C/m: AHBP là hình chữ nhật
Xét tứ giác AHBP có:
M là trung điểm AB (gt)
M là trung điểm PH ( H đ/x với P qua M)
⇒ AHBP là hình bình hành (DHNB)
Có ΔABC cân tại A
⇒ AP là trung tuyến đồng thời là đg cao
⇒ góc APB = 90 độ
⇒ AHBP là hình chữ nhật (DHNB)
d) Chứng minh AMPN là hình thoi
Tính giúp mình câu d nha!!!