cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. 2 đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân
b) tam giác BIC cân
c) IA là tia phân giác của góc BIC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b:
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>góc HBD=góc KCE
=>góc IBC=góc ICB
=>ΔIBC cân tại I
c: Xét ΔABI và ΔACI có
AI chung
AB=AC
BI=CI
=>ΔABI=ΔACI
=>góc BIA=góc CIA
=>IA là phân giác của góc BIC