K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

a)

Xét∆BCM = ∆ICM ( c-g-c )

=) BM=MI

b)

Ta có BM=MI

=) MA+MB=MA+MI .                          (1)

Lai có BC=IC

=) AC+BC = AC+IC=AI .                     (2)

Xét∆AMI có AM+MI>AI ( bđt ∆ ).    (3)

Từ (1);(2);(3)=) MA+MB>AC+BC

25 tháng 2 2018

Các bạn cho mình xin hình vẽ được không ạ?

23 tháng 7 2019

A B C M D H

Từ A vẽ AH vuông góc với CM cắt BC tại D.

\(\Delta MAH=\Delta MDH\left(cgc\right)\)(tự chứng minh)

\(=>MA=MD\)(2 cạnh tương ứng)

Theo bất đẳng thức tam giác : MD+MB>BD

nên MA+MB>BD (1)

Ta có : BD=BC+CD 

Mà CA=CD(tự chứng minh)nên BD=CA+CB(2)

Từ (1) và (2) => CA+CB<MA+MB

31 tháng 8 2017

Trên tia đối của tia CB lấy điểm A' sao cho CA' = CA. Sử dụng tính chất của tam giác cân ta có được CM là đường trung trực của AA' Þ MA = MA'. Sử dụng bất đẳng thức trong tam giác A'MB ta có: CA + CB = CA' + CB = BA' <MA' + MB Þ CA + CB < MA + MB.

21 tháng 5 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trên tia đối tia CB lấy điểm E sao cho CE = CA. Nối MA, ME nên  ∆ ACE cân tại C có CM là đường phân giác nên CM là đường trung trực (tính chất tam giác cân)

⇒ MA = ME (tính chất đường trung trực)

Ta có: AC + BC = CE + BC = BE (1)

MA + MB = ME + MB (2)

Trong ∆ MBE, ta có: BE < MB+ ME (bất đẳng thức tam giác) (3)

Từ (1), (2) và (3) suy ra: AC + CB < AM + MB.

Từ A kẻ đường vuông góc với tia pg của góc ngoài đỉnh C và cắt tia đối của tia CB tại A'.

Cm được MA = MA', CA = CA'.

Theo BĐT trong tam giác MBA' : MA' + MB > BA' = BC + CA' = BC + AC  MA + MB > BC + AC (đpcm)

 
7 tháng 6 2016

H.jpg

Từ A kẻ đường vuông góc với tia pg của góc ngoài đỉnh C và cắt tia đối của tia CB tại A'.

Cm được MA = MA', CA = CA'.

Theo BĐT trong tam giác MBA' : MA' + MB > BA' = BC + CA' = BC + AC  MA + MB > BC + AC (đpcm)

 
9 tháng 6 2016

H.jpg

Từ A kẻ đường vuông góc với tia pg của góc ngoài đỉnh C và cắt tia đối của tia CB tại A'.

C/m được MA = MA', CA = CA'.

Áp dụng BĐT vào tam giác MBA' :

MA' + MB > BA' = BC + CA' = BC + AC

MA + MB > BC + AC (đpcm)

10 tháng 6 2016

Phạm Tuấn Kiệt copy