K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

Đáp án C

Đồ thị hàm số y = a x 2   (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.

Trong đồ thị các hàm số đã cho; các đồ thị nằm phía dưới trục hoành là”

(1): y = -2 x 2 ; (3): y = - 3 x 2   và (4):y = -10 x 2

2 tháng 3 2017

Đáp án B

* Hàm số bậc nhất y = ax + b đồng biến khi a > 0 và hàm số này nghịch biến khi a < 0 .

Do đó, hàm số y = 3x đồng biến trên R nên cũng đồng biến khi x < 0 .

Hàm số y = -4x nghịch biến trên R.

* Xét hàm số y = ax2 (a ≠ 0)

Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0.

Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0.

Trong hai hàm số y = 3x2 và y = -4x2 chỉ có hàm số y = -4x2 đồng biến khi x < 0

Vậy trong các hàm số đã cho chỉ có hàm số y = 3x và y = -4x2 đồng biến x < 0.

24 tháng 5 2017

Đáp án C

Đáp án: Hàm số y = x 2 − 2 x − 3 không có đạo hàm tại  x = 0

Hàm số y = x 2 − 1 − 4 không có đạo hàm tại x = ± 1. Hàm số y = − x 4 + 2 x 2 − 3  có  lim x → ± ∞ = − ∞

Nên bảng biến thiên trên không là bảng biến thiên của 3 hàm số trên. y = x 4 − 2 x 2 − 3

Kiểm tra ta có đó là bảng biến thiên của hàm số: y = x 4 − 2 x 2 − 3  

17 tháng 11 2023

mẫu giáo dữ

9 tháng 12 2017

Đáp án C.

Ta có

y = − x 3 + x 2 − 3 x + 1 ⇒ y ' = − 3 x 2 + 2 x − 3 < 0 ;   ∀ x ∈ ℝ

suy ra hàm số nghịch biến trên  ℝ

4 tháng 4 2019

16 tháng 11 2018

+ Xét hàm số  y= f(x) = cos3x

TXĐ: D =R

Với mọi x ∈ D , ta có: - x ∈ D  và

   f( -x) = cos( - 3x) = cos3x = f(x)

Do đó, y= cos 3x là hàm chẵn trên tập xác định của nó.

+ Xét hàm y= g(x)= sin(x2 + 1)

TXĐ: D= R

Với mọi x ∈ D , ta có: - x ∈ D  và

 g( -x)= sin[ (-x)2 +1]= sin( x2+1)= g(x)

    Do đó: y= sin( x2 +1)  là hàm chẵn trên R.

    + Xét hàm số y= h( x)= tan2x .

    TXĐ: 

Với mọi x ∈ D , ta có: - x ∈ D  và

    h( -x)= tan2 (-x)= (- tanx)2 = tan2 x=  h(x)

Do đó y= tan2x là hàm số chẵn trên D.

+ Xét hàm số y= t(x)= cotx.

    TXĐ:  

Với mọi x ∈ D , ta có: - x ∈ D  và t(-x)= cot(-x) = - cotx = - t(x)

Do đó:  y= cotx là hàm số lẻ trên D.

Vậy (1); (2); (3) là các hàm số chẵn

Đáp án C

21 tháng 8 2019

Đáp án A

Xét hàm số y = ax2 (a ≠ 0)

* Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0.

* Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0.

Do đó,chỉ có hàm số y = 2x2 đồng biến khi x> 0.

28 tháng 5 2017

Đáp án là D

27 tháng 11 2019

Chọn D.

Ta có tập xác định của hàm số HdWRE8nQWbKl.png

Ta có:

nên x = 1 là đường TCĐ của đồ thị hàm số. 

nên đường thẳng y = 0 là TCN của đồ thị hàm số

15 tháng 2 2018

Đáp án C.

Ta có  y ' = 3 x 2 + 4 m − 2 x − 5   ; y ' = 0 ⇔ 3 x 2 + 4 m − 2 x − 5 = 0   (*).

Phương trình (*) có  a c < 0    nên luôn có hai nghiệm trái dấu .

Suy ra  x 1 = − x 1 ; x 2 = x 2   .

Khi đó x 1 , x 2  là hai điểm cực trị của hàm số.

x 1 − x 2 = − 2 ⇔ − x 1 − x 2 = − 2 ⇔ x 1 + x 2 = 2 ⇔ − 4 m − 2 3 = 2 ⇔ m = 1 2