K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

a) Ta có:

\(a^2+b^2+c^2\ge ab+bc+ca\)

 \(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)

\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)

Đẳng thức xảy ra khi $a=b=c.$

b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),

đúng.

Đẳng thức xảy ra khi $a=b=c.$

c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)

Đẳng thức xảy ra khi $x=0.$

d) Xét hiệu hai vế đi bạn.

25 tháng 1 2021

Chứng minh:

a, \(a^3+b^3+c^3\dfrac{>}{ }3abc\)

b,\(abc\dfrac{< }{ }\left(\dfrac{a+b+c}{3}\right)^3\)

c,\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\dfrac{< }{ }a+b+c\)

d,\(\dfrac{a}{b+c}+\dfrac{c}{a+b}+\dfrac{b}{a+c}\dfrac{>}{ }\dfrac{3}{2}\left(a,b,c>0\right)\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
NV
21 tháng 3 2022

Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại

Ta có:

\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)

\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)

\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)

\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)

Đúng theo AM-GM:

\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

NV
3 tháng 10 2021

\(404=3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)-2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\ge\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-\dfrac{2}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\le1212\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le2\sqrt{303}\)

Ta có:

\(5a^2+2ab+2b^2=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow P\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{2}{c}+\dfrac{1}{a}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{2\sqrt{303}}{3}\)

NV
8 tháng 8 2021

\(\dfrac{P}{\sqrt{2}}=\dfrac{a}{\sqrt{2b\left(a+b\right)}}+\dfrac{b}{\sqrt{2c\left(b+c\right)}}+\dfrac{c}{\sqrt{2a\left(a+c\right)}}\)

\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2a}{2b+a+b}+\dfrac{2b}{2c+b+c}+\dfrac{2c}{2a+a+c}\)

\(\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)=2\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)

\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

\(\Rightarrow P\ge\dfrac{3\sqrt{2}}{2}\) (đpcm)

8 tháng 8 2021

\(\dfrac{a}{\sqrt{ab+b^2}}=\dfrac{\sqrt{2}.a}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{\sqrt{2}.a}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)

làm tương tự với \(\dfrac{b}{\sqrt{bc+c^2}};\dfrac{c}{\sqrt{ca+a^2}}\)

\(=>P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\)

\(=2\sqrt{2}\left(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right)\)

\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\dfrac{4}{3}\left(ab+bc+ca\right)+\dfrac{8}{3}\left(ab+bc+ca\right)}\right]\)

\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{\dfrac{4}{3}\left(a+b+c\right)^2}\right]=\dfrac{2\sqrt{2}.3}{4}=\dfrac{3\sqrt{2}}{2}\)

dấu"=" xảy ra<=>a=b=c

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

19 tháng 10 2023

Ta có VP: 

\(\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)

Thay \(1=ab+bc+ca\)

\(=\dfrac{2}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)

\(=\dfrac{2}{\sqrt{\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]}}\)

\(=\dfrac{2}{\sqrt{\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)}}\)

\(=\dfrac{2}{\sqrt{\left[\left(a+c\right)\left(a+b\right)\left(b+c\right)\right]^2}}\)

\(=\dfrac{2}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

_____________

Ta có VT: 

\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)

Thay \(1=ab+ac+bc\)

\(=\dfrac{a}{ab+ac+bc+a^2}+\dfrac{b}{ab+ac+bc+b^2}+\dfrac{c}{ab+ac+bc+c^2}\)

\(=\dfrac{a}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b}{b\left(b+c\right)+a\left(b+c\right)}+\dfrac{c}{c\left(b+c\right)+a\left(b+c\right)}\)

\(=\dfrac{a}{\left(a+c\right)\left(a+b\right)}+\dfrac{b}{\left(a+b\right)\left(b+c\right)}+\dfrac{c}{\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{a\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}+\dfrac{b\left(a+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\dfrac{c\left(a+b\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{ab+ac+ab+bc+ac+bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{2ab+2ac+2bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{2\cdot\left(ab+ac+bc\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\left(ab+ac+bc=1\right)\)

Mà: \(VP=VT=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\left(dpcm\right)\)