K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

ta có : B = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 2016.2017.2018

4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019

4B = 2016.2017.2018.2019

vậy B = 2016.2017.2018.2019/4 

18 tháng 6 2017

Ta có : B = 1.2.3 + 2.3.4 + ...... + 2016.2017.2018

=> 4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019

=> 4B = 2016.2017.2018.2019

=> B = 2016.2017.2018.2019/4

5 tháng 8 2016

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)

\(=\frac{1}{1.2}-\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{56}\)

\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)

Dấu . là nhân nha

5 tháng 8 2016

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

.......................................

\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)

S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)

10 tháng 4

A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)

A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))

A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)

A = \(\dfrac{16}{99}\)

10 tháng 4

B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)

B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))

B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))

B = \(\dfrac{1}{2}\)\(\dfrac{7}{15}\)

B = \(\dfrac{7}{30}\)

17 tháng 8 2017

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300 

17 tháng 8 2017

Ta có:

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Leftrightarrow3A=99.100.101\Leftrightarrow A=\frac{99.100.101}{3}=333300\)

\(B=1.2.3+2.3.4+4.5.6+...+98.99.100\)

\(\Rightarrow4B=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+4.5.6.\left(7-3\right)+...+98.99.100.\left(101-97\right)\)

\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100\)

\(\Leftrightarrow4B=98.99.100.101\Leftrightarrow B=\frac{98.99.100.101}{4}=24497550\)

22 tháng 2 2020

ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương

17 tháng 6 2017

a)

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=(1.2.3-0.1.2)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.5\right)+...+\left[n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\right]\)\(3A=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(3A=n.\left(n+1\right).\left(n+2\right)\)

\(A=\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)

17 tháng 6 2017

c)

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.4+3.4.5.4+...+\left(n-1\right).n.\left(n+2\right).4\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)\(4B=1.2.3.4+\left(2.3.4.5-1.2.3.4\right)+\left(3.4.5.6-2.3.4.5\right)+...+\left[\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right).\left(n-2\right)\right]\)\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\\ B=\dfrac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)