Cho tam giác ABC nhọn .vẽ về phía ngoài Tam giác ABC các tam giác đều ABD và Tam giác ACE . Gọi M là giao điểm của BE và CD .CMR Tam giác ABD = Tam giác ACE vÀ góc BMC = 120 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
Xét tam giác ADC và tam giác AEB có:
AD = AB(giả thiết)
\(\widehat{DAC}=\widehat{BAE}\)(\(=60^0+\widehat{BAC}\))
AC = AE( giả thiết)
\(\Rightarrow\)tam giác ADC = tam giác ABE (c-g-c)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 góc tương ứng)
Xét tam giác ADI và tam giác BIM có:
\(\widehat{ADI}+\widehat{AIM}+\widehat{DAI}=\widehat{IBM}+\widehat{BIM}+\widehat{IMB}=180^0\)(theo định lí tổng 3 góc của tam giác)
Mà \(\widehat{ADI}=\widehat{IBM}\)(chứng minh trên)
\(\widehat{AID}=\widehat{BIM}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DAI}=\widehat{IMB}\)
Mà \(\widehat{DAI}=60^0\)
\(\Rightarrow\widehat{IMB}=60^0\)
Ta có: \(\widehat{IMB}+\widehat{BMC}=180^0\)(2 góc kề bù)
\(\Rightarrow60^0+\widehat{BMC}=180^0\)
\(\Rightarrow\widehat{BMC}=180^0-60^0=120^0\)
Vậy \(\widehat{BMC}=120^0\)(ĐPCM)
a.Vì ΔABD,ΔACE đều
→AD=AB,AC=AE,ˆDAB=ˆCAE=60°°
Xét ΔACD,ΔABE có:
AD=ABAD=AB
ˆDAC=ˆDAB+ˆBAC=ˆEAC+ˆCAB=ˆBAE
→ΔADC=ΔABE(c.g.c)
AC=AE
b.Gọi AB∩CD=F
Từ câu b →ˆADC=ˆABE
→ˆADF=ˆFBI
→ˆFIB=180o−ˆIFB−ˆIBF=180o−ˆAFD−ˆFDA=ˆDAF=ˆDAB=60°°
→ˆBIC=180o−ˆFIB=120o→BIC^=180o−FIB^=120°°
c.Từ câu a →BE=CD
Xét ΔADM,ΔABN có:
AD=AB
ˆADM=ˆADC=ˆABE=ˆABN
DM=1212CD=1212BE=BN
→ΔADM=ΔABN(c.g.c)
→AM=AN,ˆDAM=ˆBAN
→ˆMAN=ˆBAN−ˆBAM=ˆDAM−ˆBAM=ˆDAB=60°°
→ΔAMN
sai đề kìa