Số nguyên dương x nhỏ nhất thỏa mãn \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\) là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chắc đề cho x+y+z=1
\(=>\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
\(=>\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)
\(=\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
làm tương tự với \(\dfrac{y}{y+\sqrt{y+xz}},\dfrac{z}{z+\sqrt{z+xy}}\)
\(=>A\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) dấu"=" xảy ra<=>x=y=z=`/3
\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)
áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương
ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)
ta có :
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)
lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :
\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)
\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)
vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^3+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\) \(\Rightarrow a+b=7\)
Áp dụng bđt Cô-si vào 2 số dương có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=y=4\)
`1/x+1/y>=2/(\sqrt{xy})`
`<=>1/2>=2/(\sqrt{xy})`
`<=>\sqrt{xy}>=4`
`=>\sqrt{x}+\sqrt{y}>=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Lời giải:
Áp dụng BĐT AM-GM:
$x^3+1=(x+1)(x^2-x+1)\leq \left(\frac{x+1+x^2-x+1}{2}\right)^2=\frac{(x^2+2)^2}{4}$
$\Rightarrow \sqrt{x^3+1}\leq \frac{x^2+2}{2}$
$\Rightarrow \frac{1}{\sqrt{x^3+1}}\geq \frac{2}{x^2+2}$. Tương tự với các phân thức khác và cộng theo vế:
$\sum \frac{1}{\sqrt{x^3+1}}\geq 2\sum \frac{1}{x^2+2}$
Áp dụng BĐT Cauchy-Schwarz:
$\sum \frac{1}{x^2+2}\geq \frac{9}{x^2+y^2+z^2+6}=\frac{9}{12+6}=\frac{1}{2}$
$\Rightarrow \sum \frac{1}{\sqrt{x^3+1}}\geq 2.\frac{1}{2}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=2$
Ta có \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\Leftrightarrow\dfrac{1}{\sqrt{x}+\sqrt{x-1}}< \dfrac{1}{100}\Leftrightarrow\sqrt{x}+\sqrt{x-1}>100\).
Đến đây dùng pp kẹp ta tìm được số nguyên dương x nhỏ nhất thỏa mãn là x = 2501.