Tìm x thuộc Z biết
- 2.(x-1)+4.x.(x-1)=0
- x.(1+2x)-3.(2x+1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
a) (x+3)(2x-7)=15
=> x=-4 hoặc 9/2
c)(x+1)(x+2)(x+3)(x+4)=0
=> x=-4, x=-3, x=-2, x=-1
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3x+3x=-3+5-2\)
\(\Rightarrow0x=0\Rightarrow x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow3+x-3x+1=6-2x\)
\(\Rightarrow x-3x+2x=6-1-3\)
\(\Rightarrow0x=2\left(loại\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{4}{3}\end{cases}}}\)
\(7x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
\(\left(3x-1\right)2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}}\)
\(a,PT\Leftrightarrow3x^2+3x-2x^2-4x=-1-x\Leftrightarrow x^2=-1\left(\text{vô nghiệm}\right)\)
Vậy: ...
\(b,PT\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: ...
\(c,PT\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: ...
\(d,PT\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy: ...
\(e,PT\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy: ...
\(f,PT\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\Leftrightarrow x=\pm\dfrac{3}{5}\)
Vậy: ...
câu c sao tính ra vậy đc vậy k hiểu giải thích hộ e đi 36 đâu mất òi